Mathematics 3A03 Real Analysis I 2016 ASSIGNMENT 5 SOLUTIONS

This assignment is due in the appropriate locker on Fri 25 Nov 2016 at 4:25pm.

- 1. (a) Suppose f: [a, b] → R is continuous. Show that f([a, b]) is a closed interval. (Put another way: a continuous function maps compact intervals to compact intervals.) Note: Consider the single point {c} to be the closed interval [c, c].
 Solution: Since [a, b] is compact, the extreme value theorem (EVT) implies that f attains maximum and minimum values on [a, b], say M and m. Suppose f(x₁) = m and f(x₂) = M, where x₁, x₂ ∈ [a, b]. If x₁ ≤ x₂ then, since f is continuous on [x₁, x₂], the intermediate value theorem (IVT) implies that for each y ∈ [m, M], there exists x ∈ [x₁, x₂] such that f(x) = y. But this means f([a, b]) = [m, M], a closed interval. If x₁ > x₂ then the argument is the same based on [x₂, x₁].
 - (b) Is it true that continuous functions map closed sets to closed sets? Is it true that continuous functions map open sets to open sets? **Solution:** Neither is true. Let $f(x) = 1/(1 + x^2)$. Then $f : \mathbb{R} \to (0, 1]$, *i.e.*, f maps a set that is both closed and open to a set that is neither closed nor open. Note also that a constant function maps any set to a closed set.
- 2. Recall that a set A of real numbers is said to be **dense** if every open interval contains a point of A. For example, early in the course we showed in class that the set of rational numbers \mathbb{Q} is dense.
 - (a) Prove that if f is continuous and f(x) = 0 for all numbers x in a dense set A, then f(x) = 0 for all x.

Solution: Pick any $x_0 \in \mathbb{R}$. f continuous at x_0 means that for any sequence in \mathbb{R} , if $x_n \to x_0$ then $f(x_n) \to f(x_0)$. Now, since A is dense, there is a sequence $\{a_n\}$ of points in A such that $a_n \to x_0$. We know $f(a_n) = 0$ for all n because $a_n \in A$ for all n. Therefore, $f(a_n) \to 0$. But since f is continuous at x_0 , $f(a_n) \to f(x_0)$. Hence $f(x_0) = 0$.

- (b) Prove that if f and g are continuous and f(x) = g(x) for all x in a dense set A, then f(x) = g(x) for all x.
 Solution: Apply part (a) to h = f − q.
- (c) If we assume instead that $f(x) \ge g(x)$ for all x in the dense set A, show that $f(x) \ge g(x)$ for all x. Can \ge be replaced by > throughout? **Solution:** Let h = f - g. Since f and g are continuous, it follows that h is continuous. The condition $f(x) \ge g(x)$ is equivalent to $h(x) \ge 0$. Therefore, it is enough to prove that if h is continuous and $h(x) \ge 0$ for all $x \in A$ then $h(x) \ge 0$ for all $x \in \mathbb{R}$.

Pick any $x \in \mathbb{R}$ and choose a sequence $\{a_n\}$ in A such that $a_n \to x$. We know $h(a_n) \ge 0$ for all n, so $\lim_{n\to\infty} h(a_n) \ge 0$. But h is continuous at x, so $\lim_{n\to\infty} h(a_n) = h(x)$. Hence $h(x) \ge 0$. Since x was an arbitrary point in \mathbb{R} , $h(x) \ge 0$ for all $x \in \mathbb{R}$.

We cannot replace \geq by >. For example, consider $h(x) = x^2$ and $A = \mathbb{R} \setminus \{0\}$. \Box

3. A function $f : [a, b] \to [a, b]$ is said to have a fixed point $c \in [a, b]$ if f(c) = c. Show that every continuous function f mapping [a, b] into itself has at least one fixed point. *Hint:* Consider the function g(x) = f(x) - x.

Solution: Note that since f is continous on [a, b], so is g. Our goal is to show that g has a root in [a, b], *i.e.*, $\exists c \in [a, b]$ such that g(c) = 0.

Since the range of f is [a, b], we know $a \leq f(x) \leq b$ for all $x \in [a, b]$. Therefore, $g(a) = f(a) - a \geq 0$ and $g(b) = f(b) - b \leq 0$.

If either g(a) = 0 or g(b) = 0 then we are done, so assume g(a) > 0 and g(b) < 0. Then the IVT implies g has a root between a and b.

<u>Note</u>: This is a special case of "Brouwer's fixed-point theorem".

- 4. (*Trapping principle.*) In class we considered the example of a function f defined in a neighbourhood I of 0 with the property that $|f(x)| \le x^2$ for all $x \in I$. We showed that any such f is differentiable at 0 and f'(0) = 0. Suppose, more generally, that there is some function g defined on I such that $|f(x)| \le g(x)$ for all $x \in I$.
 - (a) Suppose g(0) = 0. What additional condition(s) on g are sufficient to guarantee that f is necessarily differentiable at 0? Propose and prove the most general theorem you can, *i.e.*, try to find the weakest sufficient additional condition(s) on g to ensure that f'(0) exists.

Solution: Since $|f(x)| \leq g(x)$ for all $x \in I$, we must have $g(x) \geq 0$ for all $x \in I$. Suppose

g is differentiable at 0 and
$$g'(0) = 0$$
, (\blacklozenge)

i.e.,

$$\lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = 0.$$

Since differentiability implies continuity, we also know g is continuous at 0; given g(0) = 0 this means

$$\lim_{x \to 0} g(x) = g(0) = 0$$

In addition, g(0) = 0 implies f(0) = 0, so for all $x \neq 0$ we have

$$\left|\frac{f(x) - f(0)}{x - 0}\right| = \left|\frac{f(x)}{x}\right| \le \left|\frac{g(x)}{x}\right| = \left|\frac{g(x) - g(0)}{x - 0}\right|$$

From this, for all $x \neq 0$ we have

$$-\left|\frac{g(x) - g(0)}{x - 0}\right| \le \frac{f(x) - f(0)}{x - 0} \le \left|\frac{g(x) - g(0)}{x - 0}\right|$$

Here, both the LHS and RHS $\rightarrow 0$ as $x \rightarrow 0$ (because the quantity inside the absolute value bars $\rightarrow 0$ as $x \rightarrow 0$). Consequently, the squeeze theorem implies that the quantity in the middle $\rightarrow 0$ as $x \rightarrow 0$, *i.e.*,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0,$$

i.e., f is differentiable at 0 and f'(0) = 0.

- (b) Are the sufficient condition(s) you found in part (a) also necessary?
 Solution: We must have g differentiable at 0. If not, then f = g satisfies |f(x)| ≤ g(x), yet f is not differentiable at 0. Given g(0) = 0, since g(x) ≥ 0 for all x, 0 is a minimum point for g. Therefore, since g is differentiable at 0, we must have g'(0) = 0. Thus, given g(0) = 0, condition (♠) is both necessary and sufficient to ensure that f is differentiable at 0 and f'(0) = 0.
- (c) What can be said if $g(0) \neq 0$? In particular, are the sufficient condition(s) you found still sufficient? If they were necessary with g(0) = 0, are they still necessary if $g(0) \neq 0$?

Solution: If g(0) < 0 then no function f can satisfy $|f(0)| \le g(0)$, so we must have $g(0) \ge 0$. If g(0) > 0, then (\clubsuit) is not sufficient. For example, consider $g(x) \equiv 1$. This g is differentiable everywhere and g'(0) = 0, yet any function f bounded by ± 1 satisfies $|f(x)| \le g(x)$.

The argument in part (b) showed that it is necessary that g is differentiable at 0, regardless of the value of g(0). So suppose g is differentiable at 0 but g(0) > 0. In order to infer that any f satisfying $|f(x)| \leq g(x)$ for all x is differentiable at 0, is it necessary that g'(0) = 0, as in condition (\blacklozenge)?

Since g is differentiable at 0, it is continuous at 0. Therefore, since g(0) > 0, the neighbourhood sign lemma implies that g is positive in some neighbourhood of 0. In fact, a slight modification of the proof of the neighbourhood sign lemma (take $\varepsilon = f(a)/2$ rather than f(a)) implies that $\exists m > 0$ and $\varepsilon > 0$ such that g(x) > m for all $x \in (-\varepsilon, \varepsilon)$. Now consider any f satisfying $|f(x)| \leq g(x)$ for all x and, moreover, $|f(x)| \leq m$ for all $x \in (-\varepsilon, \varepsilon)$. An example of such of function is f(x) = 0 if $x \neq 0$ and f(0) = m/2, which is <u>not</u> differentiable at 0. So, in fact, no further condition on g can force all f's that satisfy $|f(x)| \leq g(x)$ for all x to be differentiable at 0. In particular, the sign of g'(0) is irrelevant (so certainly not necessary).

- 5. Use the Mean Value Theorem to prove the following.
 - (a) If f is defined on an interval and f'(x) = 0 for all x in the interval, then f is constant on the interval.

Solution: Let a and b be any two points in the interval I, with a < b. By the MVT, $\exists \xi \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(\xi) \,. \tag{(\clubsuit)}$$

But f'(x) = 0 for all $x \in I$, so in particular $f'(\xi) = 0$, and hence f(b) = f(a). Since a and b were arbitrary points in the interval, f has the same value at every point in the interval.

- (b) If f and g are defined on the same interval and f'(x) = g'(x) for all x in the interval, then there is some $c \in \mathbb{R}$ such that f = g + c. **Solution:** Let h = f - g. Then h is differentiable and h'(x) = 0 for all x in the interval. Therefore, by part (a), h is constant, *i.e.*, f = g + c for some $c \in \mathbb{R}$. \Box
- (c) If f'(x) > 0 for all x in an interval I, then f is increasing on I. **Solution:** Suppose $a, b \in I$ and a < b. By MVT $\exists \xi \in (a, b)$ such that (\clubsuit) holds. But f'(x) > 0 for all $x \in I$, so $f'(\xi) > 0$. Therefore f(b) - f(a) > 0, *i.e.*, f(b) > f(a). Since this is true for any $a, b \in I$ with a < b, f is increasing on I. \Box
- 6. (a) Prove that a bounded function $f : [a, b] \to \mathbb{R}$ is integrable on [a, b] if and only if for all $\varepsilon > 0$ there is a partition P of [a, b] such that

$$U(f, P) - L(f, P) < \varepsilon$$
.

Solution: (\implies) Suppose the bounded function f is integrable, *i.e.*, $\sup\{L(f, P) : P \text{ a partition of } [a, b]\} = \inf\{U(f, P) : P \text{ a partition of } [a, b]\} = \int_a^b f$. Given $\varepsilon > 0$, since $\int_a^b f$ is the least upper bound of the lower sums, there is a partition P_1 such that

$$\int_a^b f = \sup_{P'} \{ L(f, P') \} < L(f, P_1) + \frac{\varepsilon}{2} ,$$

i.e.,

$$-L(f, P_1) < -\int_a^b f + \frac{\varepsilon}{2}.$$

Similarly, there is a partition P_2 such that

$$U(f, P_2) < \inf_{P'} \{ U(f, P') \} + \frac{\varepsilon}{2} = \int_a^b f + \frac{\varepsilon}{2} \,.$$

Let $P = P_1 \cup P_2$. Then

$$U(f,P) - L(f,P) \le U(f,P_2) - L(f,P_1) < \int_a^b f + \frac{\varepsilon}{2} - \int_a^b f + \frac{\varepsilon}{2} = \varepsilon$$

Page 4 of 5

(\Leftarrow) The function f is assumed bounded, so proving that f is integrable means establishing that $\sup_{P'} \{L(f, P')\} = \inf_{P'} \{U(f, P')\}$. Given $\varepsilon > 0$, choose a partition P such that

$$U(f,P) - L(f,P) < \varepsilon.$$

Now, for any partition, and in particular for P, we have

$$L(f, P) \le \sup_{P'} \{ L(f, P') \} \le \inf_{P'} \{ U(f, P') \} \le U(f, P) ,$$

and hence

$$0 \le \inf_{P'} \{ U(f, P') \} - \sup_{P'} \{ L(f, P') \} \le U(f, P) - L(f, P) < \varepsilon$$

But by hypothesis, such a partition P can be found for any given $\varepsilon > 0$. Therefore $\inf_{P'} \{ U(f, P') \} = \sup_{P'} \{ L(f, P') \}.$

(b) Suppose b > 0 and f(x) = x for all $x \in \mathbb{R}$. Prove, using only the definition of the integral (or the result proved in part (a) of this question), that

$$\int_0^b f = \frac{b^2}{2} \,.$$

(This exercise should help you appreciate the Fundamental Theorem of Calculus.) **Solution:** To apply the theorem proved in part (a), we need to show that for any given $\varepsilon > 0$ there is a partition P of [0, b] such that $U(f, P) - L(f, P) < \varepsilon$. Let $P_n = \{t_0, \ldots, t_n\}$ be a partition of [0, b] into n subintervals of equal length. Thus, $t_i = ib/n$ for each $i = 0, 1, \ldots, n$. Then

$$L(f, P_n) = \sum_{i=1}^n f(t_{i_1})(t_i - t_{i-1}) = \sum_{i=1}^n t_{i_1}(t_i - t_{i-1}) = \sum_{i=1}^n \frac{(i-1)b}{n} \cdot \frac{b}{n}$$
$$= \frac{b^2}{n^2} \sum_{i=1}^n (i-1) = \frac{b^2}{n^2} \sum_{i=0}^{n-1} i = \frac{b^2}{n^2} \cdot \frac{(n-1)n}{2} = \frac{b^2}{2} \cdot \frac{(n-1)}{n}.$$

Similarly,

$$U(f, P_n) = \frac{b^2}{2} \cdot \frac{(n+1)}{n} \,,$$

and hence

$$U(f, P_n) - L(f, P_n) = \frac{b^2}{n}.$$

Thus, given $\varepsilon > 0$, choose *n* large enough that $b^2/n < \varepsilon$. Then the partition $P = P_n$ satisfies $U(f, P) - L(f, P) < \varepsilon$.

Note: If you're not yet convinced of the power of the Fundamental Theorem of Calculus, try computing $\int_0^b x^2 dx$ directly from the definition of the integral.

Version of November 28, 2016 @ 16:43.