Mathematics 3A03 Real Analysis I 2016 ASSIGNMENT 5
 SOLUTIONS

This assignment is due in the appropriate locker on Fri 25 Nov 2016 at 4:25pm.

1. (a) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Show that $f([a, b])$ is a closed interval. (Put another way: a continuous function maps compact intervals to compact intervals.) Note: Consider the single point $\{c\}$ to be the closed interal $[c, c]$.
Solution: Since $[a, b]$ is compact, the extreme value theorem (EVT) implies that f attains maximum and minimum values on $[a, b]$, say M and m. Suppose $f\left(x_{1}\right)=m$ and $f\left(x_{2}\right)=M$, where $x_{1}, x_{2} \in[a, b]$. If $x_{1} \leq x_{2}$ then, since f is continuous on $\left[x_{1}, x_{2}\right]$, the intermediate value theorem (IVT) implies that for each $y \in[m, M]$, there exists $x \in\left[x_{1}, x_{2}\right]$ such that $f(x)=y$. But this means $f([a, b])=[m, M]$, a closed interval. If $x_{1}>x_{2}$ then the argument is the same based on $\left[x_{2}, x_{1}\right]$.
(b) Is it true that continuous functions map closed sets to closed sets? Is it true that continuous functions map open sets to open sets?
Solution: Neither is true. Let $f(x)=1 /\left(1+x^{2}\right)$. Then $f: \mathbb{R} \rightarrow(0,1]$, i.e., f maps a set that is both closed and open to a set that is neither closed nor open. Note also that a constant function maps any set to a closed set.
2. Recall that a set A of real numbers is said to be dense if every open interval contains a point of A. For example, early in the course we showed in class that the set of rational numbers \mathbb{Q} is dense.
(a) Prove that if f is continuous and $f(x)=0$ for all numbers x in a dense set A, then $f(x)=0$ for all x.
Solution: Pick any $x_{0} \in \mathbb{R}$. f continuous at x_{0} means that for any sequence in \mathbb{R}, if $x_{n} \rightarrow x_{0}$ then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Now, since A is dense, there is a sequence $\left\{a_{n}\right\}$ of points in A such that $a_{n} \rightarrow x_{0}$. We know $f\left(a_{n}\right)=0$ for all n because $a_{n} \in A$ for all n. Therefore, $f\left(a_{n}\right) \rightarrow 0$. But since f is continuous at $x_{0}, f\left(a_{n}\right) \rightarrow f\left(x_{0}\right)$. Hence $f\left(x_{0}\right)=0$.
(b) Prove that if f and g are continuous and $f(x)=g(x)$ for all x in a dense set A, then $f(x)=g(x)$ for all x.
Solution: Apply part (a) to $h=f-g$.
(c) If we assume instead that $f(x) \geq g(x)$ for all x in the dense set A, show that $f(x) \geq g(x)$ for all x. Can \geq be replaced by $>$ throughout?
Solution: Let $h=f-g$. Since f and g are continuous, it follows that h is continuous. The condition $f(x) \geq g(x)$ is equivalent to $h(x) \geq 0$. Therefore, it is enough to prove that if h is continuous and $h(x) \geq 0$ for all $x \in A$ then $h(x) \geq 0$ for all $x \in \mathbb{R}$.

Pick any $x \in \mathbb{R}$ and choose a sequence $\left\{a_{n}\right\}$ in A such that $a_{n} \rightarrow x$. We know $h\left(a_{n}\right) \geq 0$ for all n, so $\lim _{n \rightarrow \infty} h\left(a_{n}\right) \geq 0$. But h is continuous at x, so $\lim _{n \rightarrow \infty} h\left(a_{n}\right)=h(x)$. Hence $h(x) \geq 0$. Since x was an arbitrary point in \mathbb{R}, $h(x) \geq 0$ for all $x \in \mathbb{R}$.
We cannot replace \geq by $>$. For example, consider $h(x)=x^{2}$ and $A=\mathbb{R} \backslash\{0\}$.
3. A function $f:[a, b] \rightarrow[a, b]$ is said to have a fixed point $c \in[a, b]$ if $f(c)=c$. Show that every continuous function f mapping $[a, b]$ into itself has at least one fixed point. Hint: Consider the function $g(x)=f(x)-x$.
Solution: Note that since f is continous on $[a, b]$, so is g. Our goal is to show that g has a root in $[a, b]$, i.e., $\exists c \in[a, b]$ such that $g(c)=0$.

Since the range of f is $[a, b]$, we know $a \leq f(x) \leq b$ for all $x \in[a, b]$. Therefore, $g(a)=f(a)-a \geq 0$ and $g(b)=f(b)-b \leq 0$.
If either $g(a)=0$ or $g(b)=0$ then we are done, so assume $g(a)>0$ and $g(b)<0$. Then the IVT implies g has a root between a and b.
Note: This is a special case of "Brouwer's fixed-point theorem".
4. (Trapping principle.) In class we considered the example of a function f defined in a neighbourhood I of 0 with the property that $|f(x)| \leq x^{2}$ for all $x \in I$. We showed that any such f is differentiable at 0 and $f^{\prime}(0)=0$. Suppose, more generally, that there is some function g defined on I such that $|f(x)| \leq g(x)$ for all $x \in I$.
(a) Suppose $g(0)=0$. What additional condition(s) on g are sufficient to guarantee that f is necessarily differentiable at 0 ? Propose and prove the most general theorem you can, i.e., try to find the weakest sufficient additional condition(s) on g to ensure that $f^{\prime}(0)$ exists.
Solution: Since $|f(x)| \leq g(x)$ for all $x \in I$, we must have $g(x) \geq 0$ for all $x \in I$. Suppose

$$
g \text { is differentiable at } 0 \text { and } g^{\prime}(0)=0 \text {, }
$$

i.e.,

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=0
$$

Since differentiability implies continuity, we also know g is continuous at 0 ; given $g(0)=0$ this means

$$
\lim _{x \rightarrow 0} g(x)=g(0)=0 .
$$

In addition, $g(0)=0$ implies $f(0)=0$, so for all $x \neq 0$ we have

$$
\left|\frac{f(x)-f(0)}{x-0}\right|=\left|\frac{f(x)}{x}\right| \leq\left|\frac{g(x)}{x}\right|=\left|\frac{g(x)-g(0)}{x-0}\right|
$$

From this, for all $x \neq 0$ we have

$$
-\left|\frac{g(x)-g(0)}{x-0}\right| \leq \frac{f(x)-f(0)}{x-0} \leq\left|\frac{g(x)-g(0)}{x-0}\right|
$$

Here, both the LHS and RHS $\rightarrow 0$ as $x \rightarrow 0$ (because the quantity inside the absolute value bars $\rightarrow 0$ as $x \rightarrow 0$). Consequently, the squeeze theorem implies that the quantity in the middle $\rightarrow 0$ as $x \rightarrow 0$, i.e.,

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

i.e., f is differentiable at 0 and $f^{\prime}(0)=0$.
(b) Are the sufficient condition(s) you found in part (a) also necessary?

Solution: We must have g differentiable at 0 . If not, then $f=g$ satisfies $|f(x)| \leq$ $g(x)$, yet f is not differentiable at 0 . Given $g(0)=0$, since $g(x) \geq 0$ for all $x, 0$ is a minimum point for g. Therefore, since g is differentiable at 0 , we must have $g^{\prime}(0)=0$. Thus, given $g(0)=0$, condition $(\boldsymbol{\uparrow})$ is both necessary and sufficient to ensure that f is differentiable at 0 and $f^{\prime}(0)=0$.
(c) What can be said if $g(0) \neq 0$? In particular, are the sufficient condition(s) you found still sufficient? If they were necessary with $g(0)=0$, are they still necessary if $g(0) \neq 0$?
Solution: If $g(0)<0$ then no function f can satisfy $|f(0)| \leq g(0)$, so we must have $g(0) \geq 0$. If $g(0)>0$, then $(\boldsymbol{\oplus})$ is not sufficient. For example, consider $g(x) \equiv 1$. This g is differentiable everywhere and $g^{\prime}(0)=0$, yet any function f bounded by ± 1 satisfies $|f(x)| \leq g(x)$.
The argument in part (b) showed that it is necessary that g is differentiable at 0 , regardless of the value of $g(0)$. So suppose g is differentiable at 0 but $g(0)>0$. In order to infer that any f satisfying $|f(x)| \leq g(x)$ for all x is differentiable at 0 , is it necessary that $g^{\prime}(0)=0$, as in condition $(\boldsymbol{\uparrow})$?
Since g is differentiable at 0 , it is continuous at 0 . Therefore, since $g(0)>0$, the neighbourhood sign lemma implies that g is positive in some neighbourhood of 0 . In fact, a slight modification of the proof of the neighbourhood sign lemma (take $\varepsilon=f(a) / 2$ rather than $f(a)$) implies that $\exists m>0$ and $\varepsilon>0$ such that $g(x)>m$ for all $x \in(-\varepsilon, \varepsilon)$. Now consider any f satisfying $|f(x)| \leq g(x)$ for all x and, moreover, $|f(x)| \leq m$ for all $x \in(-\varepsilon, \varepsilon)$. An example of such of function is $f(x)=0$ if $x \neq 0$ and $f(0)=m / 2$, which is not differentiable at 0 . So, in fact, no further condition on g can force all f 's that satisfy $|f(x)| \leq g(x)$ for all x to be differentiable at 0 . In particular, the sign of $g^{\prime}(0)$ is irrelevant (so certainly not necessary).
5. Use the Mean Value Theorem to prove the following.
(a) If f is defined on an interval and $f^{\prime}(x)=0$ for all x in the interval, then f is constant on the interval.
Solution: Let a and b be any two points in the interval I, with $a<b$. By the MVT, $\exists \xi \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(\xi)
$$

But $f^{\prime}(x)=0$ for all $x \in I$, so in particular $f^{\prime}(\xi)=0$, and hence $f(b)=f(a)$. Since a and b were arbitrary points in the interval, f has the same value at every point in the interval.
(b) If f and g are defined on the same interval and $f^{\prime}(x)=g^{\prime}(x)$ for all x in the interval, then there is some $c \in \mathbb{R}$ such that $f=g+c$.
Solution: Let $h=f-g$. Then h is differentiable and $h^{\prime}(x)=0$ for all x in the interval. Therefore, by part (a), h is constant, i.e., $f=g+c$ for some $c \in \mathbb{R}$.
(c) If $f^{\prime}(x)>0$ for all x in an interval I, then f is increasing on I.

Solution: Suppose $a, b \in I$ and $a<b$. By MVT $\exists \xi \in(a, b)$ such that holds. But $f^{\prime}(x)>0$ for all $x \in I$, so $f^{\prime}(\xi)>0$. Therefore $f(b)-f(a)>0$, i.e., $f(b)>f(a)$. Since this is true for any $a, b \in I$ with $a<b, f$ is increasing on I.
6. (a) Prove that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ if and only if for all $\varepsilon>0$ there is a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Solution: (\Longrightarrow) Suppose the bounded function f is integrable, i.e., $\sup \{L(f, P)$: P a partition of $[a, b]\}=\inf \{U(f, P): P$ a partition of $[a, b]\}=\int_{a}^{b} f$. Given $\varepsilon>0$, since $\int_{a}^{b} f$ is the least upper bound of the lower sums, there is a partition P_{1} such that

$$
\int_{a}^{b} f=\sup _{P^{\prime}}\left\{L\left(f, P^{\prime}\right)\right\}<L\left(f, P_{1}\right)+\frac{\varepsilon}{2},
$$

i.e.,

$$
-L\left(f, P_{1}\right)<-\int_{a}^{b} f+\frac{\varepsilon}{2} .
$$

Similarly, there is a partition P_{2} such that

$$
U\left(f, P_{2}\right)<\inf _{P^{\prime}}\left\{U\left(f, P^{\prime}\right)\right\}+\frac{\varepsilon}{2}=\int_{a}^{b} f+\frac{\varepsilon}{2} .
$$

Let $P=P_{1} \cup P_{2}$. Then

$$
U(f, P)-L(f, P) \leq U\left(f, P_{2}\right)-L\left(f, P_{1}\right)<\int_{a}^{b} f+\frac{\varepsilon}{2}-\int_{a}^{b} f+\frac{\varepsilon}{2}=\varepsilon
$$

(\Longleftarrow) The function f is assumed bounded, so proving that f is integrable means establishing that $\sup _{P^{\prime}}\left\{L\left(f, P^{\prime}\right)\right\}=\inf _{P^{\prime}}\left\{U\left(f, P^{\prime}\right)\right\}$.
Given $\varepsilon>0$, choose a partition P such that

$$
U(f, P)-L(f, P)<\varepsilon .
$$

Now, for any partition, and in particular for P, we have

$$
L(f, P) \leq \sup _{P^{\prime}}\left\{L\left(f, P^{\prime}\right)\right\} \leq \inf _{P^{\prime}}\left\{U\left(f, P^{\prime}\right)\right\} \leq U(f, P),
$$

and hence

$$
0 \leq \inf _{P^{\prime}}\left\{U\left(f, P^{\prime}\right)\right\}-\sup _{P^{\prime}}\left\{L\left(f, P^{\prime}\right)\right\} \leq U(f, P)-L(f, P)<\varepsilon .
$$

But by hypothesis, such a partition P can be found for any given $\varepsilon>0$. Therefore $\inf _{P^{\prime}}\left\{U\left(f, P^{\prime}\right)\right\}=\sup _{P^{\prime}}\left\{L\left(f, P^{\prime}\right)\right\}$.
(b) Suppose $b>0$ and $f(x)=x$ for all $x \in \mathbb{R}$. Prove, using only the definition of the integral (or the result proved in part (a) of this question), that

$$
\int_{0}^{b} f=\frac{b^{2}}{2} .
$$

(This exercise should help you appreciate the Fundamental Theorem of Calculus.) Solution: To apply the theorem proved in part (a), we need to show that for any given $\varepsilon>0$ there is a partition P of $[0, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.
Let $P_{n}=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[0, b]$ into n subintervals of equal length. Thus, $t_{i}=i b / n$ for each $i=0,1, \ldots, n$. Then

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{i=1}^{n} f\left(t_{i_{1}}\right)\left(t_{i}-t_{i-1}\right)=\sum_{i=1}^{n} t_{i_{1}}\left(t_{i}-t_{i-1}\right)=\sum_{i=1}^{n} \frac{(i-1) b}{n} \cdot \frac{b}{n} \\
& =\frac{b^{2}}{n^{2}} \sum_{i=1}^{n}(i-1)=\frac{b^{2}}{n^{2}} \sum_{i=0}^{n-1} i=\frac{b^{2}}{n^{2}} \cdot \frac{(n-1) n}{2}=\frac{b^{2}}{2} \cdot \frac{(n-1)}{n} .
\end{aligned}
$$

Similarly,

$$
U\left(f, P_{n}\right)=\frac{b^{2}}{2} \cdot \frac{(n+1)}{n}
$$

and hence

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{b^{2}}{n}
$$

Thus, given $\varepsilon>0$, choose n large enough that $b^{2} / n<\varepsilon$. Then the partition $P=P_{n}$ satisfies $U(f, P)-L(f, P)<\varepsilon$.
Note: If you're not yet convinced of the power of the Fundamental Theorem of Calculus, try computing $\int_{0}^{b} x^{2} d x$ directly from the definition of the integral.

Version of November 28, 2016 @ 16:43.

