
Mathematics 3A03 Real Analysis I

2016 ASSIGNMENT 5

SOLUTIONS

This assignment is due in the appropriate locker on Fri 25 Nov 2016 at 4:25pm.

1. (a) Suppose f : [a, b]→ R is continuous. Show that f([a, b]) is a closed interval. (Put
another way: a continuous function maps compact intervals to compact intervals.)
Note: Consider the single point {c} to be the closed interal [c, c].

Solution: Since [a, b] is compact, the extreme value theorem (EVT) implies that f
attains maximum and minimum values on [a, b], say M and m. Suppose f(x1) = m
and f(x2) = M , where x1, x2 ∈ [a, b]. If x1 ≤ x2 then, since f is continuous on
[x1, x2], the intermediate value theorem (IVT) implies that for each y ∈ [m,M ],
there exists x ∈ [x1, x2] such that f(x) = y. But this means f([a, b]) = [m,M ], a
closed interval. If x1 > x2 then the argument is the same based on [x2, x1].

(b) Is it true that continuous functions map closed sets to closed sets? Is it true that
continuous functions map open sets to open sets?

Solution: Neither is true. Let f(x) = 1/(1 + x2). Then f : R → (0, 1], i.e., f
maps a set that is both closed and open to a set that is neither closed nor open.
Note also that a constant function maps any set to a closed set.

2. Recall that a set A of real numbers is said to be dense if every open interval contains a
point of A. For example, early in the course we showed in class that the set of rational
numbers Q is dense.

(a) Prove that if f is continuous and f(x) = 0 for all numbers x in a dense set A, then
f(x) = 0 for all x.

Solution: Pick any x0 ∈ R. f continuous at x0 means that for any sequence in
R, if xn → x0 then f(xn)→ f(x0). Now, since A is dense, there is a sequence {an}
of points in A such that an → x0. We know f(an) = 0 for all n because an ∈ A
for all n. Therefore, f(an) → 0. But since f is continuous at x0, f(an) → f(x0).
Hence f(x0) = 0.

(b) Prove that if f and g are continuous and f(x) = g(x) for all x in a dense set A,
then f(x) = g(x) for all x.

Solution: Apply part (a) to h = f − g.

(c) If we assume instead that f(x) ≥ g(x) for all x in the dense set A, show that
f(x) ≥ g(x) for all x. Can ≥ be replaced by > throughout?

Solution: Let h = f − g. Since f and g are continuous, it follows that h is
continuous. The condition f(x) ≥ g(x) is equivalent to h(x) ≥ 0. Therefore, it is
enough to prove that if h is continuous and h(x) ≥ 0 for all x ∈ A then h(x) ≥ 0
for all x ∈ R.
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Pick any x ∈ R and choose a sequence {an} in A such that an → x. We
know h(an) ≥ 0 for all n, so limn→∞ h(an) ≥ 0. But h is continuous at x, so
limn→∞ h(an) = h(x). Hence h(x) ≥ 0. Since x was an arbitrary point in R,
h(x) ≥ 0 for all x ∈ R.

We cannot replace ≥ by >. For example, consider h(x) = x2 and A = R \ {0}.

3. A function f : [a, b] → [a, b] is said to have a fixed point c ∈ [a, b] if f(c) = c. Show
that every continuous function f mapping [a, b] into itself has at least one fixed point.
Hint: Consider the function g(x) = f(x)− x.

Solution: Note that since f is continous on [a, b], so is g. Our goal is to show that g
has a root in [a, b], i.e., ∃c ∈ [a, b] such that g(c) = 0.

Since the range of f is [a, b], we know a ≤ f(x) ≤ b for all x ∈ [a, b]. Therefore,
g(a) = f(a)− a ≥ 0 and g(b) = f(b)− b ≤ 0.

If either g(a) = 0 or g(b) = 0 then we are done, so assume g(a) > 0 and g(b) < 0.
Then the IVT implies g has a root between a and b.

Note: This is a special case of “Brouwer’s fixed-point theorem”.

4. (Trapping principle.) In class we considered the example of a function f defined in a
neighbourhood I of 0 with the property that |f(x)| ≤ x2 for all x ∈ I. We showed that
any such f is differentiable at 0 and f ′(0) = 0. Suppose, more generally, that there is
some function g defined on I such that |f(x)| ≤ g(x) for all x ∈ I.

(a) Suppose g(0) = 0. What additional condition(s) on g are sufficient to guarantee
that f is necessarily differentiable at 0? Propose and prove the most general
theorem you can, i.e., try to find the weakest sufficient additional condition(s) on
g to ensure that f ′(0) exists.

Solution: Since |f(x)| ≤ g(x) for all x ∈ I, we must have g(x) ≥ 0 for all x ∈ I.
Suppose

g is differentiable at 0 and g′(0) = 0, (♠)

i.e.,

lim
x→0

g(x)− g(0)

x− 0
= 0 .

Since differentiability implies continuity, we also know g is continuous at 0; given
g(0) = 0 this means

lim
x→0

g(x) = g(0) = 0 .

In addition, g(0) = 0 implies f(0) = 0, so for all x 6= 0 we have∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ =

∣∣∣∣f(x)

x

∣∣∣∣ ≤ ∣∣∣∣g(x)

x

∣∣∣∣ =

∣∣∣∣g(x)− g(0)

x− 0

∣∣∣∣ .
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From this, for all x 6= 0 we have

−
∣∣∣∣g(x)− g(0)

x− 0

∣∣∣∣ ≤ f(x)− f(0)

x− 0
≤
∣∣∣∣g(x)− g(0)

x− 0

∣∣∣∣
Here, both the LHS and RHS → 0 as x → 0 (because the quantity inside the
absolute value bars → 0 as x → 0). Consequently, the squeeze theorem implies
that the quantity in the middle → 0 as x→ 0, i.e.,

lim
x→0

f(x)− f(0)

x− 0
= 0 ,

i.e., f is differentiable at 0 and f ′(0) = 0.

(b) Are the sufficient condition(s) you found in part (a) also necessary?

Solution: We must have g differentiable at 0. If not, then f = g satisfies |f(x)| ≤
g(x), yet f is not differentiable at 0. Given g(0) = 0, since g(x) ≥ 0 for all x, 0
is a minimum point for g. Therefore, since g is differentiable at 0, we must have
g′(0) = 0. Thus, given g(0) = 0, condition (♠) is both necessary and sufficient to
ensure that f is differentiable at 0 and f ′(0) = 0.

(c) What can be said if g(0) 6= 0? In particular, are the sufficient condition(s) you
found still sufficient? If they were necessary with g(0) = 0, are they still necessary
if g(0) 6= 0?

Solution: If g(0) < 0 then no function f can satisfy |f(0)| ≤ g(0), so we must
have g(0) ≥ 0. If g(0) > 0, then (♠) is not sufficient. For example, consider
g(x) ≡ 1. This g is differentiable everywhere and g′(0) = 0, yet any function f
bounded by ±1 satisfies |f(x)| ≤ g(x).

The argument in part (b) showed that it is necessary that g is differentiable at 0,
regardless of the value of g(0). So suppose g is differentiable at 0 but g(0) > 0. In
order to infer that any f satisfying |f(x)| ≤ g(x) for all x is differentiable at 0, is
it necessary that g′(0) = 0, as in condition (♠) ?

Since g is differentiable at 0, it is continuous at 0. Therefore, since g(0) > 0,
the neighbourhood sign lemma implies that g is positive in some neighbourhood
of 0. In fact, a slight modification of the proof of the neighbourhood sign lemma
(take ε = f(a)/2 rather than f(a)) implies that ∃m > 0 and ε > 0 such that
g(x) > m for all x ∈ (−ε, ε). Now consider any f satisfying |f(x)| ≤ g(x) for all
x and, moreover, |f(x)| ≤ m for all x ∈ (−ε, ε). An example of such of function
is f(x) = 0 if x 6= 0 and f(0) = m/2, which is not differentiable at 0. So, in fact,
no further condition on g can force all f ’s that satisfy |f(x)| ≤ g(x) for all x to
be differentiable at 0. In particular, the sign of g′(0) is irrelevant (so certainly not
necessary).
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5. Use the Mean Value Theorem to prove the following.

(a) If f is defined on an interval and f ′(x) = 0 for all x in the interval, then f is
constant on the interval.

Solution: Let a and b be any two points in the interval I, with a < b. By the
MVT, ∃ ξ ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(ξ) . (♣)

But f ′(x) = 0 for all x ∈ I, so in particular f ′(ξ) = 0, and hence f(b) = f(a).
Since a and b were arbitrary points in the interval, f has the same value at every
point in the interval. .

(b) If f and g are defined on the same interval and f ′(x) = g′(x) for all x in the
interval, then there is some c ∈ R such that f = g + c.

Solution: Let h = f − g. Then h is differentiable and h′(x) = 0 for all x in the
interval. Therefore, by part (a), h is constant, i.e., f = g + c for some c ∈ R.

(c) If f ′(x) > 0 for all x in an interval I, then f is increasing on I.

Solution: Suppose a, b ∈ I and a < b. By MVT ∃ ξ ∈ (a, b) such that (♣)
holds. But f ′(x) > 0 for all x ∈ I, so f ′(ξ) > 0. Therefore f(b) − f(a) > 0, i.e.,
f(b) > f(a). Since this is true for any a, b ∈ I with a < b, f is increasing on I.

6. (a) Prove that a bounded function f : [a, b] → R is integrable on [a, b] if and only if
for all ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε .

Solution: ( =⇒ ) Suppose the bounded function f is integrable, i.e., sup{L(f, P ) :

P a partition of [a, b]} = inf{U(f, P ) : P a partition of [a, b]} =
∫ b

a
f . Given

ε > 0, since
∫ b

a
f is the least upper bound of the lower sums, there is a parti-

tion P1 such that ∫ b

a

f = sup
P ′
{L(f, P ′)} < L(f, P1) +

ε

2
,

i.e.,

−L(f, P1) < −
∫ b

a

f +
ε

2
.

Similarly, there is a partition P2 such that

U(f, P2) < inf
P ′
{U(f, P ′)}+

ε

2
=

∫ b

a

f +
ε

2
.

Let P = P1 ∪ P2. Then

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) <

∫ b

a

f +
ε

2
−
∫ b

a

f +
ε

2
= ε .
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(⇐= ) The function f is assumed bounded, so proving that f is integrable means
establishing that supP ′{L(f, P ′)} = infP ′{U(f, P ′)}.
Given ε > 0, choose a partition P such that

U(f, P )− L(f, P ) < ε .

Now, for any partition, and in particular for P , we have

L(f, P ) ≤ sup
P ′
{L(f, P ′)} ≤ inf

P ′
{U(f, P ′)} ≤ U(f, P ) ,

and hence

0 ≤ inf
P ′
{U(f, P ′)} − sup

P ′
{L(f, P ′)} ≤ U(f, P )− L(f, P ) < ε .

But by hypothesis, such a partition P can be found for any given ε > 0. Therefore
infP ′{U(f, P ′)} = supP ′{L(f, P ′)}.

(b) Suppose b > 0 and f(x) = x for all x ∈ R. Prove, using only the definition of the
integral (or the result proved in part (a) of this question), that∫ b

0

f =
b2

2
.

(This exercise should help you appreciate the Fundamental Theorem of Calculus.)

Solution: To apply the theorem proved in part (a), we need to show that for any
given ε > 0 there is a partition P of [0, b] such that U(f, P )− L(f, P ) < ε.

Let Pn = {t0, . . . , tn} be a partition of [0, b] into n subintervals of equal length.
Thus, ti = ib/n for each i = 0, 1, . . . , n. Then

L(f, Pn) =
n∑

i=1

f(ti1)(ti − ti−1) =
n∑

i=1

ti1(ti − ti−1) =
n∑

i=1

(i− 1)b

n
· b
n

=
b2

n2

n∑
i=1

(i− 1) =
b2

n2

n−1∑
i=0

i =
b2

n2
· (n− 1)n

2
=
b2

2
· (n− 1)

n
.

Similarly,

U(f, Pn) =
b2

2
· (n+ 1)

n
,

and hence

U(f, Pn)− L(f, Pn) =
b2

n
.

Thus, given ε > 0, choose n large enough that b2/n < ε. Then the partition
P = Pn satisfies U(f, P )− L(f, P ) < ε.

Note: If you’re not yet convinced of the power of the Fundamental Theorem of
Calculus, try computing

∫ b

0
x2 dx directly from the definition of the integral.
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