Mathematics 3A03 Real Analysis I
2016 ASSIGNMENT 5
SOLUTIONS

This assignment is due in the appropriate locker on Fri 25 Nov 2016 at 4:25pm.

1. (a)

Suppose f : [a,b] — R is continuous. Show that f([a,b]) is a closed interval. (Put
another way: a continuous function maps compact intervals to compact intervals.)
Note: Consider the single point {c} to be the closed interal [c, c|.

Solution: Since [a, b] is compact, the extreme value theorem (EVT) implies that f
attains maximum and minimum values on [a, b], say M and m. Suppose f(x1) = m
and f(xe) = M, where x1, 29 € [a,b]. If 27 < 25 then, since f is continuous on
[1, 5], the intermediate value theorem (IVT) implies that for each y € [m, M],
there exists x € [z, x5 such that f(z) = y. But this means f([a,b]) = [m, M], a
closed interval. If 2y > x5 then the argument is the same based on [z, x1]. O

Is it true that continuous functions map closed sets to closed sets? Is it true that
continuous functions map open sets to open sets?

Solution: Neither is true. Let f(x) = 1/(1 + z?). Then f: R — (0,1], i.e., f
maps a set that is both closed and open to a set that is neither closed nor open.
Note also that a constant function maps any set to a closed set. O]

2. Recall that a set A of real numbers is said to be dense if every open interval contains a
point of A. For example, early in the course we showed in class that the set of rational
numbers Q is dense.

(a)

Prove that if f is continuous and f(x) = 0 for all numbers x in a dense set A, then
f(z) =0 for all .

Solution: Pick any zo € R. f continuous at zy means that for any sequence in
R, if x,, — x¢ then f(x,) — f(zo). Now, since A is dense, there is a sequence {a,}
of points in A such that a, — xy. We know f(a,) = 0 for all n because a, € A
for all n. Therefore, f(a,) — 0. But since f is continuous at xg, f(a,) — f(zo).
Hence f(zq) = 0. O

Prove that if f and ¢ are continuous and f(x) = g(z) for all x in a dense set A,
then f(x) = g(z) for all x.

Solution: Apply part (a) to h = f —g. O
If we assume instead that f(x) > g(x) for all z in the dense set A, show that
f(x) > g(x) for all xz. Can > be replaced by > throughout?

Solution: Let h = f — g. Since f and g are continuous, it follows that A is
continuous. The condition f(x) > g(z) is equivalent to h(x) > 0. Therefore, it is
enough to prove that if h is continuous and h(z) > 0 for all x € A then h(xz) > 0
for all z € R.
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Pick any z € R and choose a sequence {a,} in A such that a, — z. We
know h(a,) > 0 for all n, so lim, .. h(a,) > 0. But h is continuous at x, so
lim,, o h(a,) = h(zx). Hence h(xz) > 0. Since x was an arbitrary point in R,
h(z) > 0 for all z € R.

We cannot replace > by >. For example, consider h(x) = 2% and A =R\ {0}. O

3. A function f : [a,b] — |a,b] is said to have a fixed point ¢ € [a,b] if f(c) = ¢. Show

that every continuous function f mapping [a, b] into itself has at least one fixed point.
Hint: Consider the function g(z) = f(z) — x.

Solution: Note that since f is continous on [a, b], so is g. Our goal is to show that g
has a root in [a, b], i.e., 3¢ € [a,b] such that g(c) =

0.
Since the range of f is [a,b], we know a < f(z) < b for all x € [a,b]. Therefore,
gla) = f(a) —a >0 and g(b) = f(b) — b < 0.

If either g(a) = 0 or g(b) = 0 then we are done, so assume g(a) > 0 and g(b) < 0.
Then the IVT implies g has a root between a and b. O]

Note: This is a special case of “Brouwer’s fixed-point theorem”.

. (Trapping principle.) In class we considered the example of a function f defined in a
neighbourhood I of 0 with the property that |f(x)| < 2? for all z € I. We showed that
any such f is differentiable at 0 and f/(0) = 0. Suppose, more generally, that there is
some function g defined on I such that |f(x)| < g(z) for all z € I.

(a) Suppose ¢g(0) = 0. What additional condition(s) on ¢ are sufficient to guarantee
that f is necessarily differentiable at 0?7 Propose and prove the most general
theorem you can, i.e., try to find the weakest sufficient additional condition(s) on
g to ensure that f’(0) exists.

Solution: Since |f(z)| < g(x) for all z € I, we must have g(z) > 0 for all x € I.

Suppose
g is differentiable at 0 and ¢'(0) = 0, (M)

1.€.,
—g(0
o) —e0)
z—0 x—0
Since differentiability implies continuity, we also know ¢ is continuous at 0; given
g(0) = 0 this means

lim g(x) = ¢(0) = 0.

x—0

In addition, ¢g(0) = 0 implies f(0) = 0, so for all x # 0 we have

fo-10) |1t goerol

| x—0

g()

S ‘
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From this, for all z # 0 we have

Here, both the LHS and RHS — 0 as * — 0 (because the quantity inside the
absolute value bars — 0 as x — 0). Consequently, the squeeze theorem implies
that the quantity in the middle — 0 as ¢ — 0, 1.e.,

i 1@ = S(0)

z—0 x—0

=0,

i.e., f is differentiable at 0 and f’(0) = 0.

Are the sufficient condition(s) you found in part (a) also necessary?

Solution: We must have g differentiable at 0. If not, then f = g satisfies | f(z)| <
g(z), yet f is not differentiable at 0. Given ¢g(0) = 0, since g(z) > 0 for all =, 0
is a minimum point for g. Therefore, since g is differentiable at 0, we must have
¢'(0) = 0. Thus, given ¢g(0) = 0, condition () is both necessary and sufficient to
ensure that f is differentiable at 0 and f’(0) = 0.

What can be said if g(0) # 07 In particular, are the sufficient condition(s) you
found still sufficient? If they were necessary with g(0) = 0, are they still necessary
if g(0) # 07

Solution: If g(0) < 0 then no function f can satisfy |f(0)| < ¢(0), so we must
have ¢g(0) > 0. If g(0) > 0, then () is not sufficient. For example, consider
g(x) = 1. This g is differentiable everywhere and ¢'(0) = 0, yet any function f
bounded by 41 satisfies | f(z)| < g(x).

The argument in part (b) showed that it is necessary that g is differentiable at 0,
regardless of the value of ¢(0). So suppose g is differentiable at 0 but g(0) > 0. In
order to infer that any f satisfying |f(z)| < g(x) for all x is differentiable at 0, is
it necessary that ¢’(0) = 0, as in condition (#)?

Since ¢ is differentiable at 0, it is continuous at 0. Therefore, since g(0) > 0,
the neighbourhood sign lemma implies that ¢ is positive in some neighbourhood
of 0. In fact, a slight modification of the proof of the neighbourhood sign lemma
(take ¢ = f(a)/2 rather than f(a)) implies that 3m > 0 and € > 0 such that
g(x) > m for all x € (—¢,e). Now consider any f satisfying |f(z)| < g(z) for all
x and, moreover, |f(z)] < m for all z € (—&,¢). An example of such of function
is f(z) =0if z # 0 and f(0) = m/2, which is not differentiable at 0. So, in fact,
no further condition on g can force all f’s that satisfy |f(z)| < g(z) for all z to
be differentiable at 0. In particular, the sign of ¢’(0) is irrelevant (so certainly not
necessary). O
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5. Use the Mean Value Theorem to prove the following.

(a)

If f is defined on an interval and f'(x) = 0 for all x in the interval, then f is
constant on the interval.

Solution: Let a and b be any two points in the interval I, with a < b. By the
MVT, 3¢ € (a,b) such that

IO -1D _ pe). )

But f'(z) = 0 for all € I, so in particular f'({) = 0, and hence f(b) = f(a).
Since a and b were arbitrary points in the interval, f has the same value at every
point in the interval. .

If f and g are defined on the same interval and f'(z) = ¢'(z) for all z in the
interval, then there is some ¢ € R such that f =g+ c.

Solution: Let h = f — g. Then h is differentiable and A'(x) = 0 for all x in the
interval. Therefore, by part (a), h is constant, i.e., f = g + ¢ for some c € R.  [J

If f/(x) > 0 for all x in an interval I, then f is increasing on 1.

Solution: Suppose a,b € I and a < b. By MVT 3 £ € (a,b) such that (é&)
holds. But f'(z) > 0 for all z € I, so f'(§) > 0. Therefore f(b) — f(a) > 0, i.e.,
f(b) > f(a). Since this is true for any a,b € I with a < b, f is increasing on [. [

Prove that a bounded function f : [a,b] — R is integrable on [a, b] if and only if
for all € > 0 there is a partition P of [a, b] such that

U(f,P)— L(f,P)<e.

Solution: ( = ) Suppose the bounded function f is integrable, i.e., sup{L(f, P) :
P a partition of [a,b]} = inf{U(f, P) : P a partition of [a,b]} = fff Given
e > 0, since ff f is the least upper bound of the lower sums, there is a parti-
tion P; such that

b
€
/ f= SE/p{L(f’ P}y < L(f, P) + 3
i.€.,
b €
—L(f, P1) <—/ f+s
Similarly, there is a partition P, such that
g / g b g
U(f, P2) < inf{U(f. P} + 5 :/ I
Let P = P, UP,. Then

b b
UP) - LU P SUG P~ LGP < [ £+ 5= [ 5=
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( <= ) The function f is assumed bounded, so proving that f is integrable means
establishing that supp {L(f, P')} = infp {U(f, P')}.
Given € > 0, choose a partition P such that

U(f,P)—L(f,P)<e

Now, for any partition, and in particular for P, we have
L(f, P) < sup{L(f, ")} < inf{U(f, P)} < U(f, P),
P/
and hence

OS1}1.};{U<f,P/)}—SE[p{L(f,P,)}SU(f,P)—L(f,P)<E

But by hypothesis, such a partition P can be found for any given € > 0. Therefore
infp {U(f, P')} = supp {L(f, P')}. O
Suppose b > 0 and f(z) = z for all x € R. Prove, using only the definition of the
integral (or the result proved in part (a) of this question), that

-5

(This exercise should help you appreciate the Fundamental Theorem of Calculus.)

Solution: To apply the theorem proved in part (a), we need to show that for any
given € > 0 there is a partition P of [0, b] such that U(f, P) — L(f, P) < e.

Let P, = {to,...,t,} be a partition of [0,b] into n subintervals of equal length.
Thus, t; = ib/n for each i = 0,1,...,n. Then

~(i—1)b b
Zf 11 z_ Ztll _zl Z(Zn) ﬁ

Similarly,

and hence b
U(f,P,) — L(f,P,) = —.

Thus, given € > 0, choose n large enough that b*/n < e. Then the partition

P = P, satisfies U(f, P) — L(f,P) < e. O

Note: If you're not yet convinced of the power of the Fundamental Theorem of

Calculus, try computing fob 22 dx directly from the definition of the integral.
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