Mathematics 3A03 Real Analysis I
2016 ASSIGNMENT 5

This assignment is due in the appropriate locker on Fri 25 Nov 2016 at 4:25pm.

1. (a) Suppose f : [a,b] — R is continuous. Show that f([a,b]) is a closed interval. (Put
another way: a continuous function maps compact intervals to compact intervals.)
Note: Consider the single point {c} to be the closed interal [c, c|.

(b) Is it true that continuous functions map closed sets to closed sets? Is it true that
continuous functions map open sets to open sets?

2. Recall that a set A of real numbers is said to be dense if every open interval contains a
point of A. For example, early in the course we showed in class that the set of rational
numbers Q is dense.

(a) Prove that if f is continuous and f(z) = 0 for all numbers = in a dense set A, then
f(z) =0 for all z.

(b) Prove that if f and g are continuous and f(z) = g(z) for all x in a dense set A,
then f(z) = g(x) for all .

(c) If we assume instead that f(z) > g(z) for all  in the dense set A, show that
f(z) > g(x) for all z. Can > be replaced by > throughout?

3. A function f : [a,b] — [a,b] is said to have a fixed point ¢ € [a,b] if f(c¢) = ¢. Show
that every continuous function f mapping [a, b] into itself has at least one fixed point.
Hint: Consider the function g(x) = f(z) — .

4. (Trapping principle.) In class we considered the example of a function f defined in a
neighbourhood I of 0 with the property that |f(x)| < 2 for all z € I. We showed that
any such f is differentiable at 0 and f/(0) = 0. Suppose, more generally, that there is
some function g defined on I such that |f(x)| < g(z) for all z € I.

(a) Suppose ¢g(0) = 0. What additional condition(s) on g are sufficient to guarantee
that f is necessarily differentiable at 0?7 Propose and prove the most general
theorem you can, i.e., try to find the weakest sufficient additional condition(s) on
g to ensure that f/(0) exists.

(b) Are the sufficient condition(s) you found in part (a) also necessary?

(c) What can be said if g(0) # 07 In particular, are the sufficient condition(s) you
found still sufficient? If they were necessary with g(0) = 0, are they still necessary

if g(0) # 07
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5. Use the Mean Value Theorem to prove the following.

(a) If f is defined on an interval and f'(x) = 0 for all z in the interval, then f is
constant on the interval.

(b) If f and g are defined on the same interval and f'(z) = ¢'(z) for all z in the
interval, then there is some ¢ € R such that f =g+ c.

(c) If f/(x) >0 for all x in an interval I, then f is increasing on I.

6. (a) Prove that a bounded function f : [a,b] — R is integrable on [a,b] if and only if
for all € > 0 there is a partition P of [a, b] such that

U(f,P)— L(f,P) < e.

(b) Suppose b > 0 and f(z) = z for all x € R. Prove, using only the definition of the
integral (or the result proved in part (a) of this question), that

(This exercise should help you appreciate the Fundamental Theorem of Calculus.)
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