
Mathematics 3A01 Real Analysis I

2016 ASSIGNMENT 4

SOLUTIONS

This assignment is due in the appropriate locker on Wed 9 Nov 2016 at 2:25pm.

1. (a) Prove directly from the ε-δ definition that for any a > 0

lim
x→a

√
1 + x =

√
1 + a .

Solution: Since a > 0 we can restrict attention to x > −1 so there so
√

1 + x is
well-defined. To be sure of this, we will restrict attention to ε < 1.

Given 0 < ε < 1 we must find δ > 0 such that if |x− a| < δ then
∣∣√1 + x−

√
1 + a

∣∣ <
ε. To this end, note that∣∣∣√1 + x−

√
1 + a

∣∣∣ < ε

⇐⇒ −ε <
√

1 + x−
√

1 + a < ε

⇐⇒
√

1 + a− ε <
√

1 + x < ε+
√

1 + a

⇐⇒
(√

1 + a− ε
)2
< 1 + x <

(
ε+
√

1 + a
)2

⇐⇒
(√

1 + a− ε
)2 − (1 + a) < x− a <

(
ε+
√

1 + a
)2 − (1 + a) ,

where we have used the fact that f(x) = x2 is an increasing function on [0,∞) to
infer that 0 ≤ α < β < γ =⇒ 0 ≤ α2 < β2 < γ2. Since the above steps are
reversible, given 0 < ε < 1 we can choose

δ =
1

2
min

{
(1 + a)−

(√
1 + a− ε

)2
,
(
ε+
√

1 + a
)2 − (1 + a)

}
.

(b) Use the theorem on limits of compositions of functions to calculate

lim
x→0

√
1 +

√
1 +
√

1 + x .

Note: You must justify each step of your calculation.

Solution: From part (a) we know that f(x) =
√

1 + x is continuous for all x > 0. In
fact, the proof in part (a) works for any x > −1. So, in particular, f(x) =

√
1 + x is

continuous at 0, so limx→0

√
1 + x = f(0) = 1. Now, since f(x) =

√
1 + x is continuous

at 1, we have limx→1

√
1 + x =

√
2. Similarly, limx→

√
2

√
1 + x =

√
1 +
√

2. Putting
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this all together we have√
1 +
√

2 =

√
1 +
√

1 + 1

=

√
1 +

√
1 + lim

x→0

√
1 + x

=

√
1 +

√
lim
x→0

(
1 +
√

1 + x
)

=

√
1 + lim

x→0

√
1 +
√

1 + x

=

√
lim
x→0

(
1 +

√
1 +
√

1 + x
)

= lim
x→0

√
1 +

√
1 +
√

1 + x

2. In each part below, give an example of a function f that fails to be continuous at a
point x0, as described.

(i) f is discontinuous merely because f is not defined at x0;

Solution: f(x) = 0 iff x 6= 0.

Note: For simplicity, each example will be written with x0 = 0. Defining g(x) =
f(x− x0) will give an example about any x0 ∈ R.

(ii) f is discontinuous because limx→x0 f(x) fails to exist;

Solution:

f(x) =

{
0 x < 0

1 x ≥ 0

(iii) f is discontinuous at x0 even though neither defect (i) or (ii) occurs;

Solution:

f(x) =

{
0 x 6= 0

1 x = 0

(iv) f is discontinuous at x0 and discontinuous at infinitely many other points in a
neighbourhood of x0.

Solution:

f(x) =

{
1 x = 0 or x = 1

n
, n ∈ N,

0 otherwise.
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In each part below, give an example of a function f that is continuous at x0, but:

(v) is discontinuous at every point in a neighbourhood of x0;

Solution:

f(x) =

{
x x ∈ Q,
0 otherwise.

(vi) is discontinuous at countably infinitely many points in a neighbourhood of x0;

Solution:

f(x) =

{
x x = 1

n
, n ∈ N,

0 otherwise.

(vii) is continuous at countably infinitely many points in a neighbourhood N of x0
and discontinous at all other points in N .

Solution: We can construct such a function by combining aspects of each of the
previous two examples. The following picture should help motivate the definition.
The idea is that the only points of continuity are marked in red.

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

0 · · ·

First define the sequence of midpoints between red points via

mn =
1

2

( 1

n+ 1
+

1

n

)
, n ∈ N ,

and the sequence of slopes via

sn =
mn

mn − 1/(n+ 1)
=

1
2

(
1
n

+ 1
n+1

)
1
2

(
1
n
− 1

n+1

) = 2n+ 1 , n ∈ N .

Then define

f(x) =


0 x /∈ Q,

sn
(
x− 1

n+1

)
x ∈ Q and 1

n+1
≤ x < mn, n ∈ N,

mn − sn
(
x−mn

)
x ∈ Q and mn ≤ x ≤ 1

n
, n ∈ N.

Page 3 of 6



3. Suppose that f satisfies f(x+ y) = f(x) + f(y), and that f is continuous at 0. Prove
that f is continuous at a for all a ∈ R.

Solution: Note that the question assumes implicitly that f is defined on all of R.

If we insert x = y = 0 in the given equation we have f(0) = 2f(0), which implies
f(0) = 0. Consequently, 0 = f

(
x + (−x)

)
= f(x) + f(−x), which implies f(−x) =

−f(x) for all x ∈ R.

Given that f(0) = 0, continuity at 0 means that ∀ε > 0 ∃δ > 0 such that if |x| < δ
then |f(x)| < ε.

Continuity at an arbitrary given point y ∈ R means that ∀ε > 0 ∃δ > 0 such that if
|x− y| < δ then |f(x)− f(y)| < ε.

Since f is continuous at 0, given ε > 0 choose δ > 0 such that |x| < δ implies
|f(x)| < ε. Given y ∈ R, if |x− y| < δ then we have |f(x− y)| < ε. But |f(x− y)| =
|f(x) + f(−y)| = |f(x)− f(y)|. Hence |f(x)− f(y)| < ε. Thus, f is continuous at y.

Note that since δ does not depend on which y was chosen, f is actually uniformly
continuous on R.

4. Prove that if continuity of g at L is not assumed, then it is not generally true that
limx→x0 g

(
f(x)

)
= g
(

limx→x0 f(x)
)
.

Solution: It should have been stated that L = limx→x0 f(x), but hopefully this was
clear from context.

As an example, let x0 = 0, f(x) = x, and

g(x) =

{
0 x 6= 0,

1 x = 0.

Then L = limx→0 f(x) = 0 so g
(

limx→0 f(x)
)

= g(0) = 1, but g(f(x)) = g(x) for all x
so limx→0 g

(
f(x)

)
= limx→0 g(x) = 0.

5. (a) For which of the following values of α is the function f(x) = xα uniformly contin-
uous on [0,∞): α = 1

3
, 1
2
, 2, 3 ?

Solution: xα is uniformly continuous on [0,∞) for α = 1
3
, 1
2

but not for α = 2, 3.
More generally, xα is uniformly continuous on [0,∞) for 0 ≤ α ≤ 1 and not for
α > 1.

First note that for any α ≥ 0 and any β > 0, xα is uniformly continuous on the
closed interval [0, β] (because any continuous function on a compact set is uniformly
continuous on that compact set). In particular, xα is uniformly continuous on [0, 1]
for any α ≥ 0. This reduces the problem to determining for which α ≥ 0 the
function xα is uniformly continuous on (1,∞).

Uniform continuity of xα on (1,∞) means that ∀ε > 0 ∃δ > 0 such that, ∀x, y ∈
(1,∞), if |x− y| < δ then |xα − yα| < ε.
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Consider α = 2 and note that |x2 − y2| = |(x− y)(x+ y)| = |(x− y)| |(x+ y)|. No
matter how small we make |x− y|, we can make |x+ y| as large as we like. More
precisely, given any δ > 0 and any y ∈ (1,∞), we can choose x = y + δ/2. Then
|x− y| = δ/2 < δ but |x2 − y2| = 2y + δ/2 > y. Since y is arbitrary in (1,∞), x2

is not uniformly continuous on (1,∞).

For α = 3, a similar argument based on x3 − y3 = (x− y)(x2 + xy + y2) shows x3

is not uniformly continuous on (1,∞). (Use polynomial long division to compute
(x3 − y3)/(x− y) if you don’t remember the factorization.)

Now consider α = 1, which you weren’t asked about but suggests the answer for
0 < α < 1. In this case uniform continuity on the entire real line is immediate:
Given ε > 0 choose δ = ε. Then |x− y| < δ =⇒ |x1 − y1| = |x− y| < δ = ε.

Now consider α = 1/2. In this case, note that |x− y| =
∣∣x1/2 − y1/2∣∣ ∣∣x1/2 + y1/2

∣∣.
Therefore, given ε > 0, choose δ = ε and note that if x, y ∈ (1,∞) and |x− y| < δ
then ∣∣x1/2 − y1/2∣∣ =

|x− y|
|x1/2 + y1/2| <

|x− y|
2

=
δ

2
< δ = ε .

For α = 1/3, note as above that u3 − v3 = (u− v)(u2 + uv + v2) and let u = x1/3

and v = y1/3 to obtain x− y = (x1/3− y1/3)(x2/3 + x1/3y1/3 + y2/3). Then a similar
argument shows x1/3 is uniformly continuous on (1,∞).

Although you were not asked about general α in the question, it is worth noting
that a proof of the result for general α ∈ [0,∞) will be much easier after we have
proved the Mean Value Theorem.

Remark: An important consequence of this analysis of xα is that a uniformly
continuous function on an unbounded (and hence non-compact) set need not be
bounded. In particular, a uniformly continuous function need not attain a max-
imum or minimum value (though the lack of a maximum or minimum can occur
even for a uniformly continuous function on a bounded, non-compact set; what’s
an example?).

(b) Find a function f that is continuous and bounded on (0, 1], but not uniformly
continuous on (0, 1].

Solution: f(x) = sin 1
x
.

0.25 0.5 0.75 1
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(c) Find a function f that is continuous and bounded on [0,∞) but which is not
uniformly continuous on [0,∞).

Solution: f(x) = sin x2.

0 2 4 6 8 10 12 14 16

6. Prove that if f and g are each uniformly continuous on a set E ⊂ R then f + g is also
uniformly continuous on E.

Solution: Given ε > 0, choose δ > 0 such that if x, y ∈ E and |x− y| < δ then
|f(x)− f(y)| < ε/2 and |g(x)− g(y)| < ε/2. Then

|(f + g)(x)− (f + g)(y)|
∣∣(f(x) + g(x)

)
−
(
f(y) + g(y)

)∣∣
=
∣∣(f(x)− f(y)

)
+
(
g(x)− g(y)

)∣∣
≤
∣∣(f(x)− f(y)

)∣∣+
∣∣(g(x)− g(y)

)∣∣
<
ε

2
+
ε

2
= ε .

Version of December 10, 2016 @ 12:10.
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