Mathematics 3A01 Real Analysis I 2016 ASSIGNMENT 4

This assignment is due in the appropriate locker on Wed 9 Nov 2016 at 2:25pm.

1. (a) Prove directly from the ε - δ definition that for any a > 0

$$\lim_{x \to a} \sqrt{1+x} = \sqrt{1+a} \,.$$

(b) Use the theorem on limits of compositions of functions to calculate

$$\lim_{x \to 0} \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}} \,.$$

<u>Note</u>: You must justify each step of your calculation.

- 2. In each part below, give an example of a function f that fails to be continuous at a point x_0 , as described.
 - (i) f is discontinuous merely because f is not defined at x_0 ;
 - (ii) f is discontinuous because $\lim_{x\to x_0} f(x)$ fails to exist;
 - (iii) f is discontinuous at x_0 even though neither defect (i) or (ii) occurs;
 - (iv) f is discontinuous at x_0 and discontinuous at infinitely many other points in a neighbourhood of x_0 .

In each part below, give an example of a function f that is continuous at x_0 , but:

- (v) is discontinuous at every point in a neighbourhood of x_0 ;
- (vi) is discontinuous at countably infinitely many points in a neighbourhood of x_0 ;
- (vii) is continuous at countably infinitely many points in a neighbourhood \mathcal{N} of x_0 and discontinuous at all other points in \mathcal{N} .
- 3. Suppose that f satisfies f(x+y) = f(x) + f(y), and that f is continuous at 0. Prove that f is continuous at a for all $a \in \mathbb{R}$.
- 4. Prove that if continuity of g at L is not assumed, then it is not generally true that $\lim_{x\to x_0} g(f(x)) = g(\lim_{x\to x_0} f(x)).$

- 5. (a) For which of the following values of α is the function $f(x) = x^{\alpha}$ uniformly continuous on $[0, \infty)$: $\alpha = \frac{1}{3}, \frac{1}{2}, 2, 3$?
 - (b) Find a function f that is continuous and bounded on (0, 1], but not uniformly continuous on (0, 1].
 - (c) Find a function f that is continuous and bounded on $[0, \infty)$ but which is not uniformly continuous on $[0, \infty)$.
- 6. Prove that if f and g are each uniformly continuous on a set $E \subset \mathbb{R}$ then f + g is also uniformly continuous on E.

Version of November 1, 2016 @ 22:30.