Mathematics 3A01 Real Analysis I
 2016 ASSIGNMENT 4

This assignment is due in the appropriate locker on Wed 9 Nov 2016 at 2:25pm.

1. (a) Prove directly from the $\varepsilon-\delta$ definition that for any $a>0$

$$
\lim _{x \rightarrow a} \sqrt{1+x}=\sqrt{1+a}
$$

(b) Use the theorem on limits of compositions of functions to calculate

$$
\lim _{x \rightarrow 0} \sqrt{1+\sqrt{1+\sqrt{1+x}}}
$$

Note: You must justify each step of your calculation.
2. In each part below, give an example of a function f that fails to be continuous at a point x_{0}, as described.
(i) f is discontinuous merely because f is not defined at x_{0};
(ii) f is discontinuous because $\lim _{x \rightarrow x 0} f(x)$ fails to exist;
(iii) f is discontinuous at x_{0} even though neither defect (i) or (ii) occurs;
(iv) f is discontinuous at x_{0} and discontinuous at infinitely many other points in a neighbourhood of x_{0}.

In each part below, give an example of a function f that is continuous at x_{0}, but:
(v) is discontinuous at every point in a neighbourhood of x_{0};
(vi) is discontinuous at countably infinitely many points in a neighbourhood of x_{0};
(vii) is continuous at countably infinitely many points in a neighbourhood \mathcal{N} of x_{0} and discontinous at all other points in \mathcal{N}.
3. Suppose that f satisfies $f(x+y)=f(x)+f(y)$, and that f is continuous at 0 . Prove that f is continuous at a for all $a \in \mathbb{R}$.
4. Prove that if continuity of g at L is not assumed, then it is not generally true that $\lim _{x \rightarrow x_{0}} g(f(x))=g\left(\lim _{x \rightarrow x_{0}} f(x)\right)$.
5. (a) For which of the following values of α is the function $f(x)=x^{\alpha}$ uniformly continuous on $[0, \infty): \quad \alpha=\frac{1}{3}, \frac{1}{2}, 2,3$?
(b) Find a function f that is continuous and bounded on $(0,1]$, but not uniformly continuous on $(0,1]$.
(c) Find a function f that is continuous and bounded on $[0, \infty)$ but which is not uniformly continuous on $[0, \infty)$.
6. Prove that if f and g are each uniformly continuous on a set $E \subset \mathbb{R}$ then $f+g$ is also uniformly continuous on E.

