
Mathematics 3A01 Real Analysis I

2016 ASSIGNMENT 3

SOLUTIONS

This assignment is due in the appropriate locker on Friday 21 Oct 2016 at 4:25pm.

1. As you should always assume by default to be necessary, justify all your assertions
when answering the following questions:

(a) What can be said about the sequence {sn} if it converges and each sn is an integer?

Solution: Such a sequence must be “eventually constant” and converge to one of
the terms in the sequence, i.e., there must exist N ∈ N such that for all n ≥ N ,
sn = sN . To see this, note that since {sn} converges, it is a Cauchy sequence.
Therefore, there is some N ∈ N such that for all n,m ≥ N , |sn − sm| < 1/2. In
particular, for all n > N , |sn − sN | < 1/2. But since sn and sN are both integers,
this implies sn = sN for all n > N .

(b) Find all convergent subsequences of the sequence {(−1)n}. Hint: There are in-
finitely many, although there are only two limits that such subsequences can have.

Solution: We know from part (a) that any convergent subsequence is eventually
constant and converges to −1 or 1. Any finite sequence made up of −1’s and 1’s
could precede the infinite sequence of −1’s or 1’s.

(c) Find all convergent subsequences of the sequence

1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .

Hint: There are infinitely many limits that such subsequences can have.

Solution: We know from part (a) that any convergent subsequence is eventually
constant and converges to some N ∈ N. Any finite sequence of natural numbers
can precede the constant tail of the convergent subsequence.

(d) Consider the sequence
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For which numbers α is there a subsequence converging to α?
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Solution: This sequence contains every rational number in the open interval
(0, 1), i.e., every point in (0, 1) ∩Q, and no other points. Moreover, each rational
number in (0, 1) occurs infinitely many times in the sequence, for instance:
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Consequently, any rational number in (0, 1) can be the limit of a subsequence,
in particular a constant subsequence equal to the limit. It is easy to see that
the endpoints of the open interval (0, 1) can also be the limits of subsequences,
e.g., {1/n} → 0 and {(n − 1)/n} → 1. More generally, since every point in
(0, 1) ∩ Q occurs infinitely many times in the original sequence, we can construct
any sequence of rational numbers between 0 and 1 as a subsequence. But Q is
dense in R, which implies any real number in [0, 1] can be obtained as the limit of
some subsequence of the original sequence. No point outside [0, 1] can be the limit
of a subsequence because there is a neighbourhood of any point outside [0, 1] that
contains no points of the given sequence. (Another way of saying all of this is that
the closure of (0, 1) ∩Q is the closed interval [0, 1].)

2. (a) Prove that if a subsequence of a Cauchy sequence converges then so does the
original Cauchy sequence.

Solution: Suppose {sn} is a Cauchy sequence with a convergent subsequence
{sni
}, where {ni}∞i=1 ⊆ N, and suppose the convergent subsequence converges to

L. Given ε > 0 there exists N1 ∈ N such that |sni
− L| < ε/2 for all ni ≥

N1. In addition, since {sn} is a Cauchy sequence, there exists N2 ∈ N such that
|sn − sm| < ε/2 for all n,m ≥ N2. Let N = max {N1, N2} and let sni

be a term in
the subsequence for which ni > N . Then

|sn − L| = |sn − sni
+ sni

− L| ≤ |sn − sni
|+ |sni

− L| ≤ ε

2
+
ε

2
= ε ,

i.e., {sn} converges to L.

(b) Prove that any subsequence of a convergent sequence converges.

Solution: A sequence of real numbers converges iff it is a Cauchy sequence. Hence
consider a Cauchy sequence {sn}. Given ε > 0 there exists N ∈ N such that for
all n,m ≥ N , |sn − sm| < ε. Let {sni

} be a subsequence of {sn}. Then, since the
condition |sn − sm| < ε holds for all pairs of terms sn, sm with n,m ≥ N , it holds
in particular for any such pairs of terms that happen to occur in the subsequence
{sni
}. Hence the subsequence is also a Cauchy sequence.
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3. Determine which of the following sets are open, which are closed, and which are neither
open nor closed.

(a) (−∞, 0) ∪ (0,∞)

Solution: Open, not closed. It is a union of open intervals, hence open. The
origin is an accumulation point that is not in the set, so it is not closed.

(b) {1, 1
2
, 1
3
, 1
4
, 1
5
, . . .}

Solution: Not open, not closed. It contains no intervals so can’t be open. It does
not contain its accumulation point at 0, so it is not closed.

(c) {0} ∪ {1, 1
2
, 1
3
, 1
4
, 1
5
, . . .}

Solution: Not open, closed. The missing accumulation point is now included.

(d) (0, 1) ∪ (1, 2) ∪ (2, 3) ∪ (3, 4) ∪ · · · ∪ (n, n+ 1) ∪ · · ·
Solution: Open, not closed. It is a union of open intervals, hence open. The set
does not contain the accumulation points at the non-negative integers.

(e) (1
2
, 1) ∪ (1

4
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2
) ∪ (1

8
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4
) ∪ ( 1

16
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8
) ∪ · · ·

Solution: Open, not closed. It is a union of open intervals, hence open. The
set does not contain the accumulation points at 1/n for each n ∈ N (nor does it
contain the accumulation point at 0).

(f) {x : |x− π| < 1}
Solution: Open, not closed. This is the open interval (π − 1, π + 1).

(g) {x : x2 < 2}
Solution: Open, not closed. This is the open interval (−

√
2,
√

2).

(h) R \ N
Solution: Open, not closed. The complement N is closed, hence this set is open.
Each point in N is an accumulation point of the set, but is not in the set, so the
set is not closed.

(i) R \Q
Solution: Not open, not closed. Any open interval containing an irrational num-
ber also contains a rational number, so the set is not open. Every point in Q is an
accumulation point of Qc so Qc is not closed.

4. Prove or disprove: If E ⊆ R and E is both open and closed then E = R or E = ∅.

Solution: The claim is true.

As discussed in class, both R and ∅ are both open and closed. Suppose E 6= ∅ and E
is both open and closed. We will show that E = R.

Since E is non-empty, it contains at least one point, say x. Since E is open, there is a
neighbourhood of x that is contained in E. Note that any interval U containing x can
be written as the union of two half-open intervals, U = (x − `, x] ∪ [x, x + r), where
`, r > 0. Let

R = sup
{
r ∈ R : [x, x+ r) ⊆ E

}
, (∗)

Page 3 of 5



where we will use the notation R =∞ if the least upper bound does not exist. If R <∞
(i.e., R ∈ R) then—since E is closed—we must have [x, x + R] = [x, x+R) ⊆ E.
But then—since x+R ∈ E and E is open—there is a neighbourhood of x+R that is
contained in E, contradicting R being the least upper bound in (*). Therefore, R =∞.
Now let

L = inf
{
` ∈ R : (x− `, x] ⊆ E

}
. (∗∗)

Then, by a similar argument we must have L = −∞. Thus, (−∞,∞) ⊆ E, i.e.,
E = R.

5. Prove that a set E is

(a) closed iff E = E;

Solution: For any set E, E = E ∪E ′, where E ′ is the set of accumulation points
of E. By definition, a set is closed iff it contains all its accumulation points, i.e.,
E ′ ⊆ E. Thus, we are asked to prove that

E ′ ⊆ E ⇐⇒ E ∪ E ′ = E .

( =⇒ ) If A ⊆ B then for any other set C, C ∪A ⊆ C ∪B. Therefore, E ′ ⊆ E =⇒
E ∪ E ′ ⊆ E ∪ E = E.

( ⇐= ) The meaning of E ∪ E ′ = E is that E ∪ E ′ ⊆ E and E ∪ E ′ ⊇ E. But
E ∪ E ′ ⊆ E implies that E ′ ⊆ E.

(b) open iff E◦ = E.

Solution: A set E is open iff for each point x ∈ E there is a neighbourhood U of
x such that U ⊆ E, i.e., iff every point of E is an interior point of E, i.e., iff the
set of all interior points of E is entire set E, i.e., iff E◦ = E.

6. Prove directly (i.e., from the definition of the Bolzano-Weierstrass property) that

(a) the interval [0,∞) does not have the Bolzano-Weierstrass property;

Solution: We must show that there is some sequence of non-negative real numbers
that either diverges or converges to a negative real number. For example, the
sequence of natural numbers {n} diverges to ∞. Note that it is not possible to
find a sequence that converges to a point outside [0,∞) because [0,∞) is closed.

Page 4 of 5



(b) the union of two sets that with the Bolzano-Weierstrass property must have the
Bolzano-Weierstrass property.

Solution:

Let F = F1 ∪F2, where F1 and F2 are sets with the Bolzano-Weierstrass property.
Thus, for i = 1 or 2, any sequence in Fi contains a subsequence that converges
to a point in Fi. Let {sn} be a sequence in F . The sequence {sn} must contain
infinitely many terms in at least one of F1 or F2 (if not then there would be
only finitely many points in the sequence), so assume without loss of generality
that {sn} contains infinitely many points from F1. Let {tn} be the subsequence
of {sn} that contains only the points of {sn} that are in F1. This is an infinite
sequence in F1 so—since F1 has the Bolzano-Weierstrass property—{tn} contains
a subsequence that converges to a point, say L, in F1. But that subsequence of
{tn} that converges to a point in F1 is also a subsequence of the original sequence
{sn} that converges to a point in F , as required.

Version of October 21, 2016 @ 22:04.
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