Mathematics 3A01 Real Analysis I
 2016 ASSIGNMENT 3
 SOLUTIONS

This assignment is due in the appropriate locker on Friday 21 Oct 2016 at $4: 25 \mathrm{pm}$.

1. As you should always assume by default to be necessary, justify all your assertions when answering the following questions:
(a) What can be said about the sequence $\left\{s_{n}\right\}$ if it converges and each s_{n} is an integer?

Solution: Such a sequence must be "eventually constant" and converge to one of the terms in the sequence, i.e., there must exist $N \in \mathbb{N}$ such that for all $n \geq N$, $s_{n}=s_{N}$. To see this, note that since $\left\{s_{n}\right\}$ converges, it is a Cauchy sequence. Therefore, there is some $N \in \mathbb{N}$ such that for all $n, m \geq N,\left|s_{n}-s_{m}\right|<1 / 2$. In particular, for all $n>N,\left|s_{n}-s_{N}\right|<1 / 2$. But since s_{n} and s_{N} are both integers, this implies $s_{n}=s_{N}$ for all $n>N$.
(b) Find all convergent subsequences of the sequence $\left\{(-1)^{n}\right\}$. Hint: There are infinitely many, although there are only two limits that such subsequences can have.

Solution: We know from part (a) that any convergent subsequence is eventually constant and converges to -1 or 1 . Any finite sequence made $u p$ of -1 's and 1's could precede the infinite sequence of -1 's or 1 's.
(c) Find all convergent subsequences of the sequence

$$
1,2,1,2,3,1,2,3,4,1,2,3,4,5, \ldots
$$

Hint: There are infinitely many limits that such subsequences can have.
Solution: We know from part (a) that any convergent subsequence is eventually constant and converges to some $N \in \mathbb{N}$. Any finite sequence of natural numbers can precede the constant tail of the convergent subsequence.
(d) Consider the sequence

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \cdots
$$

For which numbers α is there a subsequence converging to α ?

Solution: This sequence contains every rational number in the open interval $(0,1)$, i.e., every point in $(0,1) \cap \mathbb{Q}$, and no other points. Moreover, each rational number in $(0,1)$ occurs infinitely many times in the sequence, for instance:

$$
\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \cdots
$$

Consequently, any rational number in $(0,1)$ can be the limit of a subsequence, in particular a constant subsequence equal to the limit. It is easy to see that the endpoints of the open interval $(0,1)$ can also be the limits of subsequences, e.g., $\{1 / n\} \rightarrow 0$ and $\{(n-1) / n\} \rightarrow 1$. More generally, since every point in $(0,1) \cap \mathbb{Q}$ occurs infinitely many times in the original sequence, we can construct any sequence of rational numbers between 0 and 1 as a subsequence. But \mathbb{Q} is dense in \mathbb{R}, which implies any real number in $[0,1]$ can be obtained as the limit of some subsequence of the original sequence. No point outside $[0,1]$ can be the limit of a subsequence because there is a neighbourhood of any point outside $[0,1]$ that contains no points of the given sequence. (Another way of saying all of this is that the closure of $(0,1) \cap \mathbb{Q}$ is the closed interval $[0,1]$.)
2. (a) Prove that if a subsequence of a Cauchy sequence converges then so does the original Cauchy sequence.

Solution: Suppose $\left\{s_{n}\right\}$ is a Cauchy sequence with a convergent subsequence $\left\{s_{n_{i}}\right\}$, where $\left\{n_{i}\right\}_{i=1}^{\infty} \subseteq \mathbb{N}$, and suppose the convergent subsequence converges to L. Given $\varepsilon>0$ there exists $N_{1} \in \mathbb{N}$ such that $\left|s_{n_{i}}-L\right|<\varepsilon / 2$ for all $n_{i} \geq$ N_{1}. In addition, since $\left\{s_{n}\right\}$ is a Cauchy sequence, there exists $N_{2} \in \mathbb{N}$ such that $\left|s_{n}-s_{m}\right|<\varepsilon / 2$ for all $n, m \geq N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$ and let $s_{n_{i}}$ be a term in the subsequence for which $n_{i}>N$. Then

$$
\left|s_{n}-L\right|=\left|s_{n}-s_{n_{i}}+s_{n_{i}}-L\right| \leq\left|s_{n}-s_{n_{i}}\right|+\left|s_{n_{i}}-L\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

i.e., $\left\{s_{n}\right\}$ converges to L.
(b) Prove that any subsequence of a convergent sequence converges.

Solution: A sequence of real numbers converges iff it is a Cauchy sequence. Hence consider a Cauchy sequence $\left\{s_{n}\right\}$. Given $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n, m \geq N,\left|s_{n}-s_{m}\right|<\varepsilon$. Let $\left\{s_{n_{i}}\right\}$ be a subsequence of $\left\{s_{n}\right\}$. Then, since the condition $\left|s_{n}-s_{m}\right|<\varepsilon$ holds for all pairs of terms s_{n}, s_{m} with $n, m \geq N$, it holds in particular for any such pairs of terms that happen to occur in the subsequence $\left\{s_{n_{i}}\right\}$. Hence the subsequence is also a Cauchy sequence.
3. Determine which of the following sets are open, which are closed, and which are neither open nor closed.
(a) $(-\infty, 0) \cup(0, \infty)$

Solution: Open, not closed. It is a union of open intervals, hence open. The origin is an accumulation point that is not in the set, so it is not closed.
(b) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$

Solution: Not open, not closed. It contains no intervals so can't be open. It does not contain its accumulation point at 0 , so it is not closed.
(c) $\{0\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$

Solution: Not open, closed. The missing accumulation point is now included.
(d) $(0,1) \cup(1,2) \cup(2,3) \cup(3,4) \cup \cdots \cup(n, n+1) \cup \cdots$

Solution: Open, not closed. It is a union of open intervals, hence open. The set does not contain the accumulation points at the non-negative integers.
(e) $\left(\frac{1}{2}, 1\right) \cup\left(\frac{1}{4}, \frac{1}{2}\right) \cup\left(\frac{1}{8}, \frac{1}{4}\right) \cup\left(\frac{1}{16}, \frac{1}{8}\right) \cup \cdots$

Solution: Open, not closed. It is a union of open intervals, hence open. The set does not contain the accumulation points at $1 / n$ for each $n \in \mathbb{N}$ (nor does it contain the accumulation point at 0).
(f) $\{x:|x-\pi|<1\}$

Solution: Open, not closed. This is the open interval $(\pi-1, \pi+1)$.
(g) $\left\{x: x^{2}<2\right\}$

Solution: Open, not closed. This is the open interval $(-\sqrt{2}, \sqrt{2})$.
(h) $\mathbb{R} \backslash \mathbb{N}$

Solution: Open, not closed. The complement \mathbb{N} is closed, hence this set is open. Each point in \mathbb{N} is an accumulation point of the set, but is not in the set, so the set is not closed.
(i) $\mathbb{R} \backslash \mathbb{Q}$

Solution: Not open, not closed. Any open interval containing an irrational number also contains a rational number, so the set is not open. Every point in \mathbb{Q} is an accumulation point of \mathbb{Q}^{c} so \mathbb{Q}^{c} is not closed.
4. Prove or disprove: If $E \subseteq \mathbb{R}$ and E is both open and closed then $E=\mathbb{R}$ or $E=\varnothing$.

Solution: The claim is true.
As discussed in class, both \mathbb{R} and \varnothing are both open and closed. Suppose $E \neq \varnothing$ and E is both open and closed. We will show that $E=\mathbb{R}$.

Since E is non-empty, it contains at least one point, say x. Since E is open, there is a neighbourhood of x that is contained in E. Note that any interval U containing x can be written as the union of two half-open intervals, $U=(x-\ell, x] \cup[x, x+r)$, where $\ell, r>0$. Let

$$
\begin{equation*}
R=\sup \{r \in \mathbb{R}:[x, x+r) \subseteq E\} \tag{*}
\end{equation*}
$$

where we will use the notation $R=\infty$ if the least upper bound does not exist. If $R<\infty$ (i.e., $R \in \mathbb{R}$) then-since E is closed-we must have $[x, x+R]=\overline{[x, x+R)} \subseteq E$. But then-since $x+R \in E$ and E is open-there is a neighbourhood of $x+R$ that is contained in E, contradicting R being the least upper bound in $\left(^{*}\right)$. Therefore, $R=\infty$. Now let

$$
\begin{equation*}
L=\inf \{\ell \in \mathbb{R}:(x-\ell, x] \subseteq E\} \tag{**}
\end{equation*}
$$

Then, by a similar argument we must have $L=-\infty$. Thus, $(-\infty, \infty) \subseteq E$, i.e., $E=\mathbb{R}$.
5. Prove that a set E is
(a) closed iff $\bar{E}=E$;

Solution: For any set $E, \bar{E}=E \cup E^{\prime}$, where E^{\prime} is the set of accumulation points of E. By definition, a set is closed iff it contains all its accumulation points, i.e., $E^{\prime} \subseteq E$. Thus, we are asked to prove that

$$
E^{\prime} \subseteq E \Longleftrightarrow E \cup E^{\prime}=E .
$$

(\Longrightarrow) If $A \subseteq B$ then for any other set $C, C \cup A \subseteq C \cup B$. Therefore, $E^{\prime} \subseteq E \Longrightarrow$ $E \cup E^{\prime} \subseteq E \cup E=E$.
(\Longleftarrow) The meaning of $E \cup E^{\prime}=E$ is that $E \cup E^{\prime} \subseteq E$ and $E \cup E^{\prime} \supseteq E$. But $E \cup E^{\prime} \subseteq E$ implies that $E^{\prime} \subseteq E$.
(b) open iff $E^{\circ}=E$.

Solution: A set E is open iff for each point $x \in E$ there is a neighbourhood U of x such that $U \subseteq E$, i.e., iff every point of E is an interior point of E, i.e., iff the set of all interior points of E is entire set E, i.e., iff $E^{\circ}=E$.
6. Prove directly (i.e., from the definition of the Bolzano-Weierstrass property) that
(a) the interval $[0, \infty)$ does not have the Bolzano-Weierstrass property;

Solution: We must show that there is some sequence of non-negative real numbers that either diverges or converges to a negative real number. For example, the sequence of natural numbers $\{n\}$ diverges to ∞. Note that it is not possible to find a sequence that converges to a point outside $[0, \infty)$ because $[0, \infty)$ is closed.
(b) the union of two sets that with the Bolzano-Weierstrass property must have the Bolzano-Weierstrass property.

Solution:

Let $F=F_{1} \cup F_{2}$, where F_{1} and F_{2} are sets with the Bolzano-Weierstrass property. Thus, for $i=1$ or 2 , any sequence in F_{i} contains a subsequence that converges to a point in F_{i}. Let $\left\{s_{n}\right\}$ be a sequence in F. The sequence $\left\{s_{n}\right\}$ must contain infinitely many terms in at least one of F_{1} or F_{2} (if not then there would be only finitely many points in the sequence), so assume without loss of generality that $\left\{s_{n}\right\}$ contains infinitely many points from F_{1}. Let $\left\{t_{n}\right\}$ be the subsequence of $\left\{s_{n}\right\}$ that contains only the points of $\left\{s_{n}\right\}$ that are in F_{1}. This is an infinite sequence in F_{1} so - since F_{1} has the Bolzano-Weierstrass property- $\left\{t_{n}\right\}$ contains a subsequence that converges to a point, say L, in F_{1}. But that subsequence of $\left\{t_{n}\right\}$ that converges to a point in F_{1} is also a subsequence of the original sequence $\left\{s_{n}\right\}$ that converges to a point in F, as required.

