Mathematics 3A01 Real Analysis I 2016 ASSIGNMENT 3

This assignment is due in the appropriate locker on Friday 21 Oct 2016 at 4:25pm.

1. As you should always assume by default to be necessary, justify all your assertions when answering the following questions:
(a) What can be said about the sequence $\left\{s_{n}\right\}$ if it converges and each s_{n} is an integer?
(b) Find all convergent subsequences of the sequence $\left\{(-1)^{n}\right\}$. Hint: There are infinitely many, although there are only two limits that such subsequences can have.
(c) Find all convergent subsequences of the sequence

$$
1,2,1,2,3,1,2,3,4,1,2,3,4,5, \ldots
$$

Hint: There are infinitely many limits that such subsequences can have.
(d) Consider the sequence

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \cdots
$$

For which numbers α is there a subsequence converging to α ?
2. (a) Prove that if a subsequence of a Cauchy sequence converges then so does the original Cauchy sequence.
(b) Prove that any subsequence of a convergent sequence converges.
3. Determine which of the following sets are open, which are closed, and which are neither open nor closed.
(a) $(-\infty, 0) \cup(0, \infty)$
(b) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
(c) $\{0\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
(d) $(0,1) \cup(1,2) \cup(2,3) \cup(3,4) \cup \cdots \cup(n, n+1) \cup \cdots$
(e) $\left(\frac{1}{2}, 1\right) \cup\left(\frac{1}{4}, \frac{1}{2}\right) \cup\left(\frac{1}{8}, \frac{1}{4}\right) \cup\left(\frac{1}{16}, \frac{1}{8}\right) \cup \cdots$
(f) $\{x:|x-\pi|<1\}$
(g) $\left\{x: x^{2}<2\right\}$
(h) $\mathbb{R} \backslash \mathbb{N}$
(i) $\mathbb{R} \backslash \mathbb{Q}$
4. Prove or disprove: If $E \subseteq \mathbb{R}$ and E is both open and closed then $E=\mathbb{R}$ or $E=\varnothing$.
5. Prove that a set E is
(a) closed iff $\bar{E}=E$;
(b) open iff $E^{\circ}=E$.
6. Prove directly (i.e., from the definition of the Bolzano-Weierstrass property) that
(a) the interval $[0, \infty)$ does not have the Bolzano-Weierstrass property;
(b) the union of two sets that with the Bolzano-Weierstrass property must have the Bolzano-Weierstrass property.

