
Mathematics 3A01 Real Analysis I

2016 ASSIGNMENT 2

SOLUTIONS

This assignment is due in the appropriate locker on Friday 30 Sep 2016 at 4:25pm.

1. Suppose m,n ∈ N. Prove that

(a) if m2/n2 < 2 then
(m+ 2n)2

(m+ n)2
> 2 and, furthermore,

(m+ 2n)2

(m+ n)2
− 2 < 2− m2

n2
; (1)

Solution: First note that

(m+ 2n)2

(m+ n)2
> 2 ⇐⇒ (m+ 2n)2 > 2(m+ n)2 (2a)

⇐⇒ m2 + 4mn+ 4n2 > 2(m2 + 2mn+ n2) (2b)

⇐⇒ m2 +���4mn+ 4n2 > 2m2 +���4mn+ 2n2 (2c)

⇐⇒ 2n2 > m2 (2d)

⇐⇒ m2/n2 < 2 (2e)

Thus, not only does m2/n2 < 2 imply (m+ 2n)2/(m+n)2 > 2, the two statements
are actually equivalent.

Now note that inequality (1), which is the main thing that we are aiming to prove
in this part, is equivalent to

(m+ 2n)2 − 2(m+ n)2

(m+ n)2
<

2n2 −m2

n2
,

which, upon clearing fractions, is equivalent to

n2[(m+ 2n)2 − 2(m+ n)2] < (m+ n)2(2n2 −m2) .

But
(m+ 2n)2 − 2(m+ n)2 = 2n2 −m2 ,

hence (1) is equivalent to

n2(2n2 −m2) < (m+ n)2(2n2 −m2) ,

i.e.,
0 < [(m+ n)2 − n2](2n2 −m2) .

Since (m+n)2 > n2 for any m,n ∈ N, this last inequality is true iff 2n2 > m2, i.e.,
iff m2/n2 < 2.
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(b) if m2/n2 > 2 then
(m+ 2n)2

(m+ n)2
− 2 > 2− m2

n2
;

Solution: The proof is the same as part (a) with all inequalities reversed. Note

that although not requested specifically in this part, we first obtain (m+2n)2

(m+n)2
< 2.

(c) if m/n <
√

2 then it is possible to write down a formula for another rational
number m′/n′ with

m

n
<
m′

n′
<
√

2

(specifically, m′ = 3m+ 4n and n′ = 2m+ 3n).

Solution: Given m/n <
√

2, let m̃ = m + 2n and ñ = m + n. Then part (a)
yields m̃2/ñ2 > 2, i.e., m̃/ñ >

√
2, and, furthermore,

0 <
m̃

ñ
−
√

2 <
√

2− m

n
. (♥)

Note that this implies

0 <

∣∣∣∣m̃ñ −√2

∣∣∣∣ <
∣∣∣m
n
−
√

2
∣∣∣ ,

i.e., m̃/ñ is closer to
√

2 than m/n is. Now, since m̃/ñ >
√

2, letting m′ = m̃+ 2ñ
(i.e., m′ = 3m+4n) and n′ = m̃+ñ (i.e., n′ = 2m+3n), part (b) yields m′/n′ <

√
2

and, furthermore,
√

2− m̃

ñ
<

m′

n′
−
√

2 < 0 .

Multiplying this inequality chain by −1 we have

0 <
√

2− m′

n′
<

m̃

ñ
−
√

2 . (♠)

As above, note that this implies

0 <

∣∣∣∣m′n′ −√2

∣∣∣∣ <

∣∣∣∣m̃ñ −√2

∣∣∣∣ ,
i.e., m′/n′ is closer to

√
2 than m̃/ñ is. Putting (♥) and (♠) together we have, in

particular,

0 <
√

2− m′

n′
<

√
2− m

n
.

Multiplying by −1 we have

m

n
−
√

2 <
m′

n′
−
√

2 < 0 .

Adding
√

2, we obtain
m

n
<

m′

n′
<

√
2 , (3)

as required.
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2. Use the principle of mathematical induction to prove that for any n ∈ N,

(a)
n∑

k=1

k =
n(n+ 1)

2
;

Solution: Let P (n) denote the proposition that the stated formula is true. We
must show that P (1) is true and that if P (n) is true then P (n + 1) is also true.
Proposition P (1) is simply 1 = 1, which is true. Suppose P (n) is true (this is
called the induction hypothesis). Then

n+1∑
k=1

k =
( n∑

k=1

k
)

+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 2)(n+ 1)

2
,

which confirms P (n+ 1) given P (n). Therefore, by the principle of mathematical
induction, the proposition P (n) is true for all n ∈ N.

(b)
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Solution: Let P (n) denote the proposition that the stated formula is true. We
must show that P (1) is true and that if P (n) is true then P (n + 1) is also true.
Proposition P (1) is simply 1 = 1, which is true. Suppose P (n) is true. Then

n+1∑
k=1

k2 =
( n∑

k=1

k2
)

+ (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (by the induction hypothesis)

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

= (n+ 1)
n(2n+ 1) + 6(n+ 1)

6

= (n+ 1)
2n2 + 7n+ 1

6

= (n+ 1)
2(n+ 1)2 + 3(n+ 1) + 1

6

=
(n+ 1)

(
(n+ 1) + 1

)(
2(n+ 1) + 1

)
6

,

which confirms P (n+ 1) given P (n). Therefore, by the principle of mathematical
induction, the proposition P (n) is true for all n ∈ N.
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Remark: If you are looking for a highly non-trivial Extra Challenge Problem, try
to find a general formula (in terms of n and p) for

n∑
k=1

kp , p ∈ N.

3. Use the formal definition of a limit of a sequence to prove that

(a) lim
n→∞

2

n4
= 0 ;

Solution: We need to show that given any ε > 0 there is a natural number N
such that for all n ≥ N , 2/n4 < ε. To figure out how to choose N given ε, suppose
first that what we want to prove is true, i.e., suppose 2/n4 < ε. Then n4 > 2/ε,
i.e., n > (2/ε)1/4. These steps are reversible, so we now have what we need to
construct a proof:

Proof. Given ε > 0, let N =
⌈
(2/ε)1/4

⌉
+ 1 (where dxe denotes the least integer

greater or equal to than x). Then for any n ≥ N , we have n > (2/ε)1/4, which
implies n4 > 2/ε, i.e., 2/n4 < ε. Hence limn→∞

2
n4 = 0.

(b) lim
n→∞

n2 + 3n

n3 − 3
= 0 ;

Solution: For any n ∈ N, n2 + 3n < n2 + 3n2 = 4n2. Also, for any n > 3 we have
0 < n3 − 3n2 < n3 − 3, so 1/(n3 − 3) < 1/(n3 − 3n2). Hence, for n > 3,

0 <
n2 + 3n

n3 − 3
<

4n2

n3 − 3
<

4n2

n3 − 3n2
=

4

n− 3
,

so given ε > 0 it will be sufficient to choose N such that 4/(N − 3) < ε, i.e.,
N > (4/ε) + 3.

Proof. Given ε > 0, choose N = d4/εe + 4. Then N > (4/ε) + 3 and hence
4/(N − 3) < ε. Moreover, since N > 3, given any n ≥ N we have

0 <
n2 + 3n

n3 − 3
<

4n2

n3 − 3
<

4n2

n3 − 3n2
=

4

n− 3
<

4

N − 3
< ε.

Therefore, the stated limit is indeed 0.

(c) lim
n→∞

[√
n+ 1−

(√
n+
√

1
)]

= −1 .

Solution: Intuitively,
√
n+ 1 ≈ √n for large n, so it looks like the limit must

indeed be −1. More formally, given ε > 0 we must show that for sufficiently large
n, ∣∣∣[√n+ 1− (

√
n+
√

1)
]
− (−1)

∣∣∣ < ε .

But ∣∣∣[√n+ 1− (
√
n+
√

1)
]
− (−1)

∣∣∣ =
√
n+ 1−√n ,
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so our goal is to find N ∈ N such that for all n ≥ N ,

√
n+ 1−√n < ε .

To that end, note that for any n ∈ N we have

0 <
√
n+ 1−√n =

[√
n+ 1−√n

]
·
√
n+ 1 +

√
n√

n+ 1 +
√
n

=
(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

<
1√

n+
√
n

=
1

2
√
n
.

Noting now that 1/(2
√
N) < ε iff N > 1/(4ε2), we’re in business:

Proof. Given ε > 0, let N = d1/(4ε2)e + 1. Then, for any n ≥ N , 1/(2
√
n) ≤

1/(2
√
N) < ε. Moreover, from the analysis above, we have that for any n ∈ N,√

n+ 1−√n < 1/(2
√
n). Consequently, for any n ≥ N , we have∣∣∣[√n+ 1− (
√
n+
√

1)
]
− (−1)

∣∣∣ =
√
n+ 1−√n < ε,

as required.

4. Use the formal definition to prove that the following sequences {sn} diverge as n→∞.

(a) sn = rn (for any r > 1) ;

Solution: If M > 0 then rn > M ⇐⇒ n log r > logM ⇐⇒ n > log r/ logM .
So, given M > 0, if we choose N > log r/ logM then for any n ≥ N we will have
rn > M . Here, we are using the fact that log r is well-defined and positive for any
real number r > 1, which is not something we’ve proved. Can we do without the
logarithm function?

Let δ = r − 1 and note that δ > 0 since r > 1. Thus rn = (1 + δ)n. To find a
suitable N ∈ N, note that (1 + δ)n > 1 + nδ for all n (this is easy to prove by
induction). Consequently we can make (1+δ)n as large as we like by making 1+δn
sufficiently large. Now we can construct a proof without using the a function (log)
that we haven’t defined:

Proof. Given any M > 0, let N = dM/δe, where δ = r− 1 > 0. Then N ≥M/δ >
(M − 1)/δ, and hence δN > M − 1, i.e., 1 + δN > M . Consequently, for any
n ≥ N , it follows that rn = (1 + δ)n > 1 + δn ≥ 1 + δN > M . Thus, if r > 1 then
the sequence {rn} diverges to ∞.
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(b) sn =
( 1

n
− 1
)n

.

Oops!!! This problem is too hard at this stage. My apologies! Hopefully you found
it interesting to think about. We will return to this problem later in the course.
For now, here’s a plot:

0 20 40 60 80 100

-0.2

0.0

0.2

sn

n

5. Suppose L ∈ R and
lim
n→∞

sn = L.

Use the formal definition of a limit of a sequence to prove that

lim
n→∞

s2n = L2.

Solution: One approach would be to replicate the proof given in class concerning the
limit of a product of two convergent sequences. The present problem is the special
case of that theorem when both sequences are the same. But let’s instead reason this
through from scratch without appealing to the proof of the more general result. Given
ε > 0, we must show that for sufficiently large n, |s2n − L2| < ε. Let’s manipulate
|s2n − L2| in ways that might allow us to use the fact that we can make |sn − L| as
small as we like: ∣∣s2n − L2

∣∣ = |(sn − L)(sn + L)| = |sn − L| |sn + L| .

We can make |sn − L| as small as we like for sufficiently large n, so, in particular, we can
make it less than |L|, in which case |sn + L| = |sn − L+ 2L| ≤ |sn − L|+ 2 |L| < 3 |L|.
Now, for sufficiently large n, we can ensure that |sn − L| < ε/(3 |L|). This is everything
we need for our proof:
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Proof. Given ε > 0, choose N ∈ N such that for all n ≥ N ,

|sn − L| < min

{
|L| , ε

3 |L|

}
.

Then, for all n ≥ N , we have∣∣s2n − L2
∣∣ = |(sn − L)(sn + L)| = |sn − L| |sn + L|

= |sn − L| |sn − L+ 2L| ≤ |sn − L|
(
|sn − L|+ 2 |L|

)
< |sn − L|

(
|L|+ 2 |L|

)
= |sn − L|

(
3 |L|

)
<

ε

3 |L|
(
3 |L|

)
= ε ,

as required.

6. Problem 1 showed that if m/n is a rational approximation to
√

2 then (m+2n)/(m+n)
is a better approximation. This implies that starting from any rational number q, we
can construct a sequence of rational numbers that gets closer and closer to

√
2. In

particular, if we start with m = n = 1 then we obtain

1,
3

2
,

7

5
,

17

12
, . . .

(a) Prove that this sequence is given recursively by

q1 = 1, qn+1 = 1 +
1

1 + qn
.

Solution: The sequence of rational numbers that arise in problem 1 is

m

n︸︷︷︸
q1

→ m̃

ñ
=
m+ 2n

m+ n︸ ︷︷ ︸
q2

→ m′

n′
=
m̃+ 2ñ

m̃+ ñ︸ ︷︷ ︸
q3

→ · · · . (4)

Observe that

m+ 2n

m+ n
=

(m/n) + 2

(m/n) + 1
=

[(m/n) + 1] + 1

(m/n) + 1
= 1 +

1

1 + (m/n)
.

Thus, if we define

f(x) = 1 +
1

1 + x
,

then for any q ∈ Q the sequence is given recursively by q → f(q)→ f(f(q))→ · · · .
In particular, if the first term of the sequence is 1 then we have

q1 = 1, qn+1 = 1 +
1

1 + qn
, n ∈ N ,

as required.
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(b) Prove that
lim
n→∞

qn =
√

2 . (*)

Hint: Separately consider the subsequences {q2n} and {q2n+1} and show that they
both converge to the same limit.

Solution: It is often helpful to make a plot of a sequence to see what’s going
on and potentially help us discover a way to proceed with a proof. Let’s plot the
sequence and highlight the claimed limit in yellow:

5 10 15 20

1.0

1.1

1.2

1.3

1.4

1.5

qn

n

It certainly does appear to converge to
√

2, but the convergence is so rapid that it
is hard to see how it gets there. Let’s replot with vertical axis limits

√
2± 0.01.

5 10 15 20

1.405

1.410

1.415

1.420

1.425

qn

n

This didn’t help much, because the convergence is so fast. We’ll have to stretch
the distance between the sequence elements and the limit. So let’s plot

√
2 + sign(qn −

√
2)
∣∣∣qn −√2

∣∣∣1/n .
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5 10 15 20

1.0
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1.7

qn

n

Distance from
√
2 geometrically expanded

Now we can see clearly, as we know analytically from problem 1, that the sequence
alternates between terms that are below and above

√
2. (Moreover, as a matter of

interest, the fact that the distance from
√

2 appears to be constant in the graph
above suggests strongly that the rate of convergence to the limit is geometric; con-
sequently, extremely accurate approximations of

√
2 can be obtained by iterating

only a few terms of this sequence.)

The graphs produced by our numerical exploration support the proposed approach
suggested in the hint. Namely, we should separately consider subsequences made
up of even and odd numbered terms.

Proof. We will make use of the notation established in part (a) (e.g., (4)) and the
analysis conducted in Problem 1. Since q1 = 1, we certainly have q1 <

√
2, so

inequality (2) implies that q2 >
√

2; in addition, inequality (3) implies

q1 < q3 <
√

2 . (5)

Moreoever, by an argument analogous to that yielding inequality (3), but starting
instead from m/n >

√
2, we obtain

√
2 < q4 < q2 . (6)

Thus, it follows more generally that

q1 < q3 < q5 < · · · <
√

2 < · · · < q6 < q4 < q2 , (7)

which can be expressed as

q2n+1 < q2n+3 <
√

2 < q2n+2 < q2n , n ∈ N, (8)

i.e., the odd-numbered subsequence {q2n−1} is increasing and bounded above by√
2 and the even-numbered subsequence {q2n} is decreasing and bounded below by√
2. Therefore, by the monotone convergence theorem, both these subsequences

converge (to their least upper and greatest lower bound, respectively). Let

L = lim
n→∞

q2n−1 , R = lim
n→∞

q2n . (9)
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Inequalities (7), together with the theorem that limits of sequences retain bounds,
imply that

L ≤
√

2 ≤ R . (10)

What remains to show is that L = R. This is equivalent to showing R − L = 0,
so consider the differences between corresponding terms in the even-numbered and
odd-numbered sequences,

q2n+2 − q2n+1 =

(
1 +

1

1 + q2n+1

)
−
(

1 +
1

1 + q2n

)
=

q2n+2 − q2n+1

(1 + q2n+1)(1 + q2n)
. (11)

Since the sequences {q2n} and {q2n+1} converge (and neither L nor R is −1) we
can use the theorem on the algebra of limits to infer that the limit of the LHS of
equation (11) is

lim
n→∞

(q2n+2 − q2n+1) = lim
n→∞

q2n+2 − lim
n→∞

q2n+1 = R− L , (12)

and the limit of the RHS of equation (11) is

lim
n→∞

q2n+2 − q2n+1

(1 + q2n+1)(1 + q2n)
=

limn→∞ q2n+2 − limn→∞ q2n+1

(1 + limn→∞ q2n+1)(1 + limn→∞ q2n)
=

R− L
(1 + L)(1 +R)

.

(13)
Thus

R− L =
R− L

(1 + L)(1 +R)
, (14)

which is possible iff R = L. Given inequality (10), we finally have L = R =
√

2.

It is worth noting that (*) implies that

√
2 = 1 +

1

2 + 1
2+···

,

which is called the continued fraction expansion of
√

2.

Remark: As an Extra Challenge Problem you might like to use the ideas in
this problem to prove that the square root of any natural number can be well-
approximated by a continued fraction. Big hint: Prove that for any m,n ∈ N,

√
m2 + n = m+

n

2m+ n
2m+···

.

Now, given a natural number N , what choice for m and n in the continued fraction
yields the fastest convergence to

√
N , i.e., if you want to approximate

√
N to a

given number of decimal places using the fewest possible iterations of the sequence,
how should you choose m and n?
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