Mathematics 3A01 Real Analysis I 2016 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 30 Sep 2016 at 4:25pm.

1. Suppose $m, n \in \mathbb{N}$. Prove that
(a) if $m^{2} / n^{2}<2$ then $\frac{(m+2 n)^{2}}{(m+n)^{2}}>2$ and, furthermore,

$$
\frac{(m+2 n)^{2}}{(m+n)^{2}}-2<2-\frac{m^{2}}{n^{2}}
$$

(b) if $m^{2} / n^{2}>2$ then

$$
\frac{(m+2 n)^{2}}{(m+n)^{2}}-2>2-\frac{m^{2}}{n^{2}}
$$

(c) if $m / n<\sqrt{2}$ then it is possible to write down a formula for another rational number m^{\prime} / n^{\prime} with

$$
\frac{m}{n}<\frac{m^{\prime}}{n^{\prime}}<\sqrt{2}
$$

(specifically, $m^{\prime}=3 m+4 n$ and $n^{\prime}=2 m+3 n$).
2. Use the principle of mathematical induction to prove that for any $n \in \mathbb{N}$,
(a) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$;
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
3. Use the formal definition of a limit of a sequence to prove that
(a) $\lim _{n \rightarrow \infty} \frac{2}{n^{4}}=0$;
(b) $\lim _{n \rightarrow \infty} \frac{n^{2}+3 n}{n^{3}-3}=0$;
(c) $\lim _{n \rightarrow \infty}[\sqrt{n+1}-(\sqrt{n}+\sqrt{1})]=-1$.
4. Use the formal definition to prove that the following sequences $\left\{s_{n}\right\} \underline{\text { diverge }}$ as $n \rightarrow \infty$.
(a) $s_{n}=r^{n} \quad($ for any $r>1)$;
(b) $s_{n}=\left(\frac{1}{n}-1\right)^{n}$.
5. Suppose $L \in \mathbb{R}$ and

$$
\lim _{n \rightarrow \infty} s_{n}=L
$$

Use the formal definition of a limit of a sequence to prove that

$$
\lim _{n \rightarrow \infty} s_{n}^{2}=L^{2}
$$

6. Problem 1 showed that if m / n is a rational approximation to $\sqrt{2}$ then $(m+2 n) /(m+n)$ is a better approximation. This implies that starting from any rational number q, we can construct a sequence of rational numbers that gets closer and closer to $\sqrt{2}$. In particular, if we start with $m=n=1$ then we obtain

$$
1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots
$$

(a) Prove that this sequence is given recursively by

$$
q_{1}=1, \quad q_{n+1}=1+\frac{1}{1+q_{n}}
$$

(b) Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q_{n}=\sqrt{2} \tag{*}
\end{equation*}
$$

Hint: Separately consider the subsequences $\left\{q_{2 n}\right\}$ and $\left\{q_{2 n+1}\right\}$ and show that they both converge to the same limit.

It is worth noting that $(*)$ implies that

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\cdots}}
$$

which is called the continued fraction expansion of $\sqrt{2}$.

