
Mathematics 3A01 Real Analysis I

2016 ASSIGNMENT 1

SOLUTIONS

This assignment is due in the appropriate locker on Friday 16 Sep 2016 at 4:25pm.

1. Prove that
√

3 is irrational.

Solution: As a first step, we’ll prove that an integer m is a multiple of 3 if and only
if m2 is a multiple of 3. To establish this, we need to prove both the “if” and “only
if” directions of this statement.

“Only if” direction: If m is a multiple of 3 then there is another integer k such that
m = 3k, which implies that m2 = 9k2 = 3(3k2), i.e., m2 is also a multiple of 3.

“If” direction: If m is not a multiple of a 3 then either m = 3k + 1 or m = 3k + 2 for
some integer k. In either of these cases m2 = 3` + 1 for some integer ` and hence is
not a multiple of 3. To see this, note that (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1
and (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k) + 4 = 3(3k2 + 4k + 1) + 1.

Thus m is a multiple of 3 if and only if m2 is a multiple of 3.

Now suppose, in order to derive a contradiction, that
√

3 ∈ Q. Then there exist two
positive integers m and n with gcd(m,n) = 1 such that m/n =

√
3.

∴
(m
n

)2

=
(√

3
)2

=⇒ m2

n2
= 3 =⇒ m2 = 3n2.

Thus, m2 is a multiple of 3, and hence—from our analysis above—it follows that m is a
multiple of 3. Therefore, m = 3k for some k ∈ N, which implies m2 = 9k2 = 3n2, and
hence 3k2 = n2. Thus, n2 is a multiple of 3, which implies—again from our analysis
above—that n in a multiple of 3.

We have now established that both m and n contain a factor of 3, which contradicts
gcd(m,n) = 1. Our initial assumption that

√
3 ∈ Q must therefore be false, and we

can conclude that
√

3 6∈ Q.

2. The field of integers modulo 2 (Z2) can be defined by interpretting “number” to mean
either 0 or 1, and + and · to be the operations specified by the following two tables.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Prove that all the field axioms hold for Z2, even though 1 + 1 = 0.

Solution: The field axioms are given on slide 11 of Lecture 2. The addition and
multiplcation tables above give the results of adding or multiplying all possible pairs of
elements of Z2. Consequently, to verify the axioms that involve only pairs of elements
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of the field, we can simply check the table entries. This works for A1 (closed, commu-
tative), A3 (additive identity), A4 (additive inverses), M1 (closed, commutative), M3
(multiplicative identity), M4 (multiplicative inverses). What remain to verify are the
associative laws (A2 and M2) and the distributive law (AM1).

There are eight cases for A2, since each of x, y, z can be 0 or 1. But we can reduce the
number of cases that must be checked by exploiting the other axioms that have already
been verified. In particular, because A3 is true, it follows that x+ (y+ z) = (x+y) + z
if x, y or z is 0, so only the case x = y = z = 1 must be checked. Similarly for M2.
Finally, AM1 is true for x = 0, since 0 · y = 0 for all y ∈ Z2, and it is true for x = 1,
since 1 · y = y for all y.

3. For each of the following sets, find the greatest lower bound (inf), least upper bound
(sup), minimum (min) and maximum (max), if they exist, or indicate non-existence
(@). Justify your assertions.

(a) (−2,−1).

(b) { 1
n

: n ∈ N}.
(c) { 1

n
: n ∈ Z and n 6= 0}.

(d) { 1
n

+ (−1)n : n ∈ N}.

Solution: The answers to the questions are most easily summarized in a table:

Set inf sup min max

(a) (−2,−1) −2 −1 @ @

(b) { 1
n

: n ∈ N} 0 1 @ 1

(c) { 1
n

: n ∈ Z and n 6= 0} −1 1 −1 1

(d) { 1
n

+ (−1)n : n ∈ N} −1 3/2 @ 3/2

To justify the entries in this table, consider the following:

(a) (−2,−1), like any finite open interval, is bounded above and below, with endpoints
that are its inf and sup. But the endpoints are not in the set, so neither the min
nor max exists.

(b) Since n ≥ 1 for all n ∈ N, we have 1/n ≤ 1 for all n ∈ N. For n = 1 we have 1/n =
1, so the max (and hence sup) is 1. Since n > 0 for all n ∈ N, we have 1/n > 0
for all n ∈ N. But for any ε > 0 there is a natural number n such that 1/n < ε.
Hence inf{ 1

n
: n ∈ N} = 0. However, 0 is not in the set, so there is no min. We can

visualize this set by plotting the the points with, say, n ≤ 30 on the number line.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Perhaps more instructively, we can plot the function f(n) = 1/n for n ≤ 30.
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(c) This is similar to (b) except that n can be negative. In particular n = −1 is
possible, so 1/(−1) = −1 is in the set and this is the set’s minimum.

Number line visualization:
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Plot of f(n):
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(d) For the last set, let f(n) = 1
n

+(−1)n and note that f(n) ≤ 0 if n is odd and f(n) >
0 if n is even. Hence we can restrict attention to odd n to investigate lower bounds
and even n to investigate upper bounds. For odd n, we have f(n) = −1 + 1

n
> −1,

but f(n) is arbitrarily close to −1 for sufficiently large n. Consequently, the set’s
inf is −1, which is not in the set, so there is no minimum. For even n, we have
f(n) = 1 + 1

n
≤ 3

2
for all n ≥ 2. Since 3

2
is in the set (for n = 2), it is both the sup

and max.

Visualizing this set on the number line yields:
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

while plotting f(n) for n ≤ 30 yields:
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4. Prove that if
|x− x0| <

ε

2
and |y − y0| <

ε

2
, (♥)

then

|(x + y)− (x0 + y0)| < ε ,

and |(x− y)− (x0 − y0)| < ε .

Solution: Although it was not stated explicitly, the intention was to assume that
x, y, x0, y0, ε ∈ R and ε > 0. Since R is a field, we have

|(x + y)− (x0 + y0)| = |(x− x0) + (y − y0)| field axioms A1, A2, AM1

≤ |x− x0|+ |y − y0| triangle inequality

<
ε

2
+

ε

2
given inequalities (♥)

= ε .

The proof that |(x− y)− (x0 − y0)| < ε is similar.

5. Suppose q is a rational number such that

1 < q ≤ 3−
√

2 . (*)

Write q = m/n, where m,n ∈ N and gcd(m,n) = 1. Prove that
√

2 is a positive
distance from q. Specifically, show that∣∣∣√2− m

n

∣∣∣ ≥ 1

3n2
. (**)
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Hint: First prove that if gcd(m,n) = 1 then 2n2 and m2 are distinct integers; then
“rationalize the numerator” in the LHS of (**).

Solution: Following the hint, let’s first prove that if gcd(m,n) = 1 then 2n2 and m2

are distinct integers. If neither m nor n has a factor of 2 then 2n2 is even and m2 is
odd, so the two integers are distinct. Suppose that n contains a factor 2. Then m does
not contain a factor of 2 (since gcd(m,n) = 1) so, again, 2n2 is even and m2 is odd.
Finally, suppose m contains a factor of 2, in which case n does not contain a factor of
2. In this case, m2 has a factor of 22 whereas the largest power of 2 in 2n2 is just 1.
Hence 2n2 and m2 are distinct. QED.

Now, since 2n2 and m2 are distinct integers, it follows that |2n2 −m2| ≥ 1. Conse-
quently, ∣∣∣√2− m

n

∣∣∣ =

∣∣∣∣∣
√

2n−m

n

∣∣∣∣∣
=

∣∣√2n−m
∣∣

n
·
√

2n + m√
2n + m

=
|2n2 −m2|
n(
√

2n + m)

≥ 1

n(
√

2n + m)
∵

∣∣2n2 −m2
∣∣ ≥ 1

=
1

n2(
√

2 + (m/n))

≥ 1

n2(3)
∵
√

2 + (m/n) ≤ 3 from (*)

=
1

3n2
,

as required.

Remark: To make what we’ve proved here a little more concrete, consider the following.
Näıvely, we might guess that there is a rational number q in the interval [1.1, 1.5] that
is equal to

√
2. Our analysis above restricted attention to rational numbers that

satisfy (*), i.e., rational numbers q such that 1 < q ≤ 3 −
√

2. But 1 < 1.1 and
1.5 < 3−

√
2 ' 1.5857864, so the interval [1.1, 1.5] is within the interval to which our

analysis applies. Suppose that we were to guess that
√

2 = 1.4 (i.e., that
√

2 is exactly
equal to 1.4). Noting that 1.4 = 7/5, our proof implies that, in fact,∣∣∣√2− 1.4

∣∣∣ ≥ 1

3 · 52
=

1

75
' 0.0133333 . (1)

This is, of course, consistent with a calculator telling us that
√

2 − 1.4 ' 0.0142136,
but no computation with a calculator yields a proof that

√
2 6= 1.4.
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