Mathematics 3A01 Real Analysis I
 2016 ASSIGNMENT 1

This assignment is due in the appropriate locker on Friday 16 Sep 2016 at 4:25pm.

1. Prove that $\sqrt{3}$ is irrational.
2. The field of integers modulo $2\left(\mathbb{Z}_{2}\right)$ can be defined by interpretting "number" to mean either 0 or 1 , and + and \cdot to be the operations specified by the following two tables.

	0	1		$0 \quad 1$		
0	0	1	0	0	0	0
1	1	0	1	0	1	1

Prove that all the field axioms hold for \mathbb{Z}_{2}, even though $1+1=0$.
3. For each of the following sets, find the greatest lower bound (inf), least upper bound (sup), minimum (min) and maximum (max), if they exist, or indicate non-existence (\nexists). Justify your assertions.
(a) $(-2,-1)$.
(b) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
(c) $\left\{\frac{1}{n}: n \in \mathbb{Z}\right.$ and $\left.n \neq 0\right\}$.
(d) $\left\{\frac{1}{n}+(-1)^{n}: n \in \mathbb{N}\right\}$.
4. Prove that if

$$
\left|x-x_{0}\right|<\frac{\varepsilon}{2} \quad \text { and } \quad\left|y-y_{0}\right|<\frac{\varepsilon}{2}
$$

then

$$
\begin{aligned}
& \quad\left|(x+y)-\left(x_{0}+y_{0}\right)\right|<\varepsilon, \\
& \text { and } \quad\left|(x-y)-\left(x_{0}-y_{0}\right)\right|<\varepsilon .
\end{aligned}
$$

5. Suppose q is a rational number such that

$$
\begin{equation*}
1<q \leq 3-\sqrt{2} \tag{*}
\end{equation*}
$$

Write $q=m / n$, where $m, n \in \mathbb{N}$ and $\operatorname{gcd}(m, n)=1$. Prove that $\sqrt{2}$ is a positive distance from q. Specifically, show that

$$
\begin{equation*}
\left|\sqrt{2}-\frac{m}{n}\right| \geq \frac{1}{3 n^{2}} \tag{**}
\end{equation*}
$$

Hint: First prove that if $\operatorname{gcd}(m, n)=1$ then $2 n^{2}$ and m^{2} are distinct integers; then "rationalize the numerator" in the LHS of $\left({ }^{* *}\right)$.

