Mathematics 3A01 Real Analysis I 2016 ASSIGNMENT 1

This assignment is due in the appropriate locker on Friday 16 Sep 2016 at 4:25pm.

- 1. Prove that $\sqrt{3}$ is irrational.
- 2. The field of integers modulo 2 (\mathbb{Z}_2) can be defined by interpretting "number" to mean either 0 or 1, and + and \cdot to be the operations specified by the following two tables.

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Prove that all the field axioms hold for \mathbb{Z}_2 , even though 1 + 1 = 0.

- For each of the following sets, find the greatest lower bound (inf), least upper bound (sup), minimum (min) and maximum (max), if they exist, or indicate non-existence (≇). Justify your assertions.
 - (a) (-2, -1).
 - (b) $\{\frac{1}{n} : n \in \mathbb{N}\}.$
 - (c) $\{\frac{1}{n} : n \in \mathbb{Z} \text{ and } n \neq 0\}.$
 - (d) $\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\}.$
- 4. Prove that if

$$|x-x_0| < \frac{\varepsilon}{2}$$
 and $|y-y_0| < \frac{\varepsilon}{2}$,

then

$$|(x+y) - (x_0 + y_0)| < \varepsilon$$
,
and $|(x-y) - (x_0 - y_0)| < \varepsilon$.

5. Suppose q is a rational number such that

$$1 < q \le 3 - \sqrt{2}$$
. (*)

Write q = m/n, where $m, n \in \mathbb{N}$ and gcd(m, n) = 1. Prove that $\sqrt{2}$ is a positive distance from q. Specifically, show that

$$\left|\sqrt{2} - \frac{m}{n}\right| \ge \frac{1}{3n^2} \,. \tag{**}$$

Hint: First prove that if gcd(m, n) = 1 then $2n^2$ and m^2 are distinct integers; then "rationalize the numerator" in the LHS of (**).